
- •Омская государственная медицинская академия Кафедра мобилизационной подготовки здравоохранения и медицины катастроф
- •Введение
- •1. Радиобиология как наука, учебная дисциплина и как направление практической деятельности врача: предмет, цели, задачи, структура основные разделы.
- •2. Виды ионизирующих излучений и их свойства. Количественная оценка ионизирующих излучений. Основы дозиметрии. Источники радионуклидов в природе и народном хозяйстве.
- •Наиболее важные свойства ионизирующих излучений
- •1. Электромагнитные ии:
- •Количественная оценка ии
- •Источники радионуклидов
- •3. Факторы, вызывающие поражения людей при ядерных взрывах и радиационных авариях. Общая характеристика радиационных поражений. Понятие зон радиоактивного заражения. Очаги радиационного поражения.
- •Молекулярные механизмы лучевого повреждения биосистем
- •Реакции клеток на облучение
- •Биологическое усиление радиационного поражения
- •Формы лучевой гибели клеток
- •Действие излучений на ткани, органы и системы организма
- •5. Радиобиологические эффекты. Классификация радиобиологических эффектов. Значение радиобиологических эффектов для судьбы облученного организма
- •Заключение
- •Приложение
- •Основные стадии в действии излучений на биологические системы
Биологическое усиление радиационного поражения
Наиболее значимы для судьбы облученной клетки, изменения нуклеинового обмена, белкового обмена, окислительного фосфорилирования.
Практически сразу после облучения в делящихся клетках замедляется синтез ДНК. Активируются эндо- и экзонуклеазы, вследствие чего повышается ферментативный гидролиз молекул ядерной ДНК; увеличение проницаемости внутриклеточных мембран способствует поступлению ферментов во внутриядерное пространство, повышает доступность ядерной ДНК для ферментативной атаки. Распад ДНК приводит к повышению содержания в тканях полидезоксинуклеотдов. В крови и моче облученных нарастает количество нуклеотидов и продуктов их разрушения - азотистых оснований, нуклеозидов, мочевой кислоты и др.
Синтез РНК снижается в меньшей степени, чем ДНК. Отчасти нарушение синтеза РНК зависит от повреждения матричных структур ДНК.
Повреждение мембран лизосом и выход за их пределы протеаз способствуют в ранние сроки после облучения активации процессов протеолиза. Эта активация проявляется повышением уровня свободных аминокислот и других аминосоединений в тканях и жидкостях организма, аминоацидурией, развитием отрицательного азотистого баланса. Повышается активность протеолитических ферментов в крови, тканях, моче. Нарушается активность ингибиторов протеаз. Активация протеолиза не всегда является выражением процессов, происходящих в сохранивших жизнеспособность клетках. Она может отражать завершение деструкции уже погибших клеток.
Биосинтез белка нарушается мало. Однако, продолжающийся синтез белка в сочетании с глубоким снижением или даже прекращением синтеза ДНК может привести к серьезным нарушениям структуры и пространственной организации нуклеопротеидных комплексов. Распад комплекса ДНК- гистон облегчает доступ мутагенов к освобожденным от связей с белком участкам ДНК.
Интенсивность потребления кислорода существенно не изменяется. Однако, в первые часы после облучения иногда наблюдаются признаки тканевой гипоксии. В высоко радиочувствительных клетках уже после облучения в сравнительно невысоких дозах отмечается нарушение окислительного фосфорилирования, проявляющееся снижением коэффициента Р/О.
В клетках кроветворных тканей угнетение окислительного фосфорилирования выявляется уже через 2-4 ч после облучения, параллельно с глубоким распадом ДНК. По мнению ряда исследователей, нарушение синтеза АТФ является пусковым звеном в послелучевой деградации ДНК. Нарушение синтеза макроэргов может сказаться и на развитии восстановительных процессов, в частности, на работе системы ферментов репарации ДНК. Таким образом, подавление окислительного фосфорилирования играет заметную роль в радиационном поражении генетических структур клетки.
Тканевое дыхание и окислительное фосфорилирование в клетках перенесшего облучение организма, как правило, довольно быстро восстанавливается.
Формы лучевой гибели клеток
Важнейшим радиобиологическим эффектом является гибель клеток. Различают две основные ее формы: репродуктивную, то есть непосредственно связанную с процессом деления клетки, и интерфазную, которая может произойти в любой фазе клеточного цикла.
Если в результате облучения возникли повреждения ДНК, например, двойные разрывы или сшивки, нормальная репликация клеток делается невозможной. При формировании хромосом повреждения ДНК проявляются возникновением мостов, фрагментов и других типов хромосомных аберраций, многие из которых летальны, поскольку невозможно равномерное распределение генетического материала между дочерними клетками. Эта форма гибели клеток в митозе получила наименование репродуктивной гибели.
Количество повреждений ДНК, возникающих в результате облучения достаточно велико. Так, например, при облучении в дозе 1 Гр, в каждой клетке человека возникает около тысячи одиночных и ста-двухсот двойных разрывов. Каждое из этих событий могло бы иметь фатальные последствия, если бы не существовало упоминавшихся ранее систем, способных ликвидировать большинство возникших повреждений ДНК. Клетки, успевшие репарировать повреждения ДНК до вступления в фазу митоза, способны к нормальному делению. Вызываемое облучением торможение процессов подготовки к делению объективно может благоприятно сказаться на судьбе клетки, поскольку в результате увеличивается время, необходимое для репарации лучевого повреждения. Сейчас большинство исследователей считает, что непосредственной причиной репродуктивной гибели клеток являются нерепарированные повреждения ДНК, прежде всего, двойные разрывы цепей и повреждения ДНК-мембранного комплекса. Морфологически клетки, погибающие по репродуктивному типу, можно выявить в ана- или метафазе митоза, обнаружив в них хромосомные аберрации.
По интерфазному типу могут погибать клетки находящиеся вне фазы митоза. Чаще всего для возникновения интерфазной гибели требуется облучение в достаточно высокой дозе. Для некоторых типов клеток (миоциты, нейроциты) это десятки и даже сотни грей, а такие клетки, как лимфоциты, тимоциты, ооциты могут погибнуть уже после воздействия в дозах порядка десятых и даже сотых долей грея.
Механизмами интерфазной гибели клеток могут быть некроз и апоптоз. Исходным событием для некроза клеток, подвергшихся облучению, является чаще всего вызванное активацией перекисного окисления липидов повреждение внутриклеточных мембран. Повреждение мембран нарушает работу связанных с мембранами ферментов, подавляет процесс окислительного фосфорилирования; повышение проницаемости мембран приводит к нарушению градиентов концентраций низкомолекулярных веществ в клетке, выходу лизосомальных протеаз и нуклеаз в цитоплазму и проникновению их в ядро. В результате всех этих процессов развивается деградация нуклеопротеидных комплексов в ядре, происходит расплавление или (реже) пикноз ядра, цитолиз с выходом содержимого клетки за пределы клеточной мембраны.
В случае апоптоза происходит межнуклеосомная деградация хроматина, проявляющаяся позднее фрагментацией ядра. Распадается и цитоплазма, участки которой, окружающие осколки ядра получили наименование “апоптотических телец”. По существующим представлениям процесс апоптоза запускается включением программы самоуничтожения клетки. Происходит активация участков генома, которые контролируют синтез ферментов, участвующих в деградации хроматина. Эту активацию могут вызывать стимулы, возникающие под влиянием разных факторов, в том числе и вызванных облучением повреждений мембранных структур, ядерного хроматина. Механизм апоптоза особенно характерен для интерфазной гибели лимфоидных клеток, клеток кроветворной ткани.