
- •В.В. Лазарев геология
- •Глава 1. Основы общей геологии
- •Солнечная система
- •1.1.2. Галактика
- •1.1.3. Строение Вселенной
- •1.1.4. Методы изучения Вселенной
- •1.1.6. Специальные термины
- •1.2. Общая характеристика Земли
- •1.2.1. Форма и размеры Земли
- •Понятие о массе и плотности Земли
- •Магнетизм Земли
- •1.2.4. Теплота Земли
- •1.2.5. Специальные термины
- •1.3. Строение Земли
- •1.3.1. Внешние оболочки Земли
- •1.3.2. Внутренние оболочки и ядро Земли
- •1.3.3. Гипотеза о возникновении земной коры
- •1.4. Физическая жизнь земной коры
- •1.4.1. Общая характеристика геологических процессов
- •Экзогенные процессы
- •Выветривание (гипергенез)
- •1.4.4. Денудация
- •Геологическая деятельность ветра
- •Геологическая деятельность поверхностных текущих вод
- •1.4.4.3. Геологическая деятельность подземных вод
- •1.4.4.4. Геологическая деятельность ледников
- •Классификация морен по гранулометрическому составу
- •1.4.4.5. Многолетняя (вечная) мерзлота
- •1.4.4.6. Общие сведения о Мировом океане
- •1.4.4.7. Основные черты рельефа дна океана
- •1.4.4.8. Геологическая деятельность моря
- •1.4.4.9. Понятие о фациях
- •1.4.5. Эндогенные геологические процессы
- •1.4.5.1. Тектонические процессы
- •1.4.5.2. Магматические процессы
- •Метаморфические процессы
- •Землетрясения
- •Глава 2. Основы минерологии,
- •2.1. Общие сведения о минералогии
- •2.1.1. Понятие о минералах
- •2.1.2. Физические свойства минералов
- •2.1.3. Классификация минералов, их характеристика
- •2.1.4. Породообразующие минералы
- •2.2. Основы петрографии
- •2.2.1. Общие сведения о горных породах
- •2.2.2. Магматические породы
- •2.2.3. Осадочные породы
- •2.2.4. Метаморфические породы
- •Глава 3. Основы историчекой
- •Основы исторической геологии
- •Методы исторической геологии
- •Фации и формации комплексов горных пород
- •Стратиграфические и геохронологические подразделения
- •Глава 2. Основы минерологии, 67
- •Глава 3. Основы историчекой 91
- •Глава 4. Основы геологии 138
- •Глава 5. Поиск и разведка 223
- •Глава 6. Нефтегазопромысловая 268
- •3.1.4. Определения возраста Земли и горных пород
- •3.1.5. Развитие органического мира и тектонические движения Земли
- •3.2. Основы структурной геологии
- •3.2.1. Основные элементы структуры литосферы
- •3.2.2. Основные формы залегания горных пород
- •3.2.4 Развитие структур земной коры
- •3.2.5. Спрединг океанического дна
- •3.2.6. Тектоника литосферных плит
- •Глава 4. Основы геологии
- •Нефть и природный газ
- •4.1.2. Нефть и природный газ — ценные природные ископаемые
- •4.1.3. Нефть, ее химический состав и свойства
- •4.1.4. Природный углеводородный газ
- •4.1.5. Воды нефтяных и газовых месторождений
- •Промысловая классификация подземных вод
- •4.1.6. Нефть как источник загрязнения окружающей среды
- •4.2. Условия залегания нефти
- •Промыслово-геологическая классификация нефти и газа (по м.И. Максимову, с изменениями)
- •4.2.2. Фильтрационные свойства пород-коллекторов
- •4.2.3. Нефте-, газо-, водонасыщенность пород-коллекторов
- •Глава 2. Основы минерологии, 67
- •Глава 3. Основы историчекой 91
- •Глава 4. Основы геологии 138
- •Глава 5. Поиск и разведка 223
- •Глава 6. Нефтегазопромысловая 268
- •4.2.4. Понятие о покрышках
- •4.2.5. Природные резервуары и ловушки
- •Залежи и месторождения нефти и газа
- •Образование и разрушение залежей нефти и газа
- •4.3. Нефтегазоносные провинции
- •4.3.1. Понятие о нефтегазоносных провинциях и областях
- •4.3.2. Нефтегазоносные провинции и области России и сопредельных государств
- •4.3.3. Волго-Уральская нефтегазоносная провинция
- •4.3.4. Тимано-Печорская нефтегазоносная провинция
- •4.3.5. Западно-Сибирская нефтегазоносная провинция
- •Глава 5. Поиск и разведка
- •Понятие о поиске и разведке месторождений нефти и газа
- •Методологические основы прогнозирования
- •Методы поисков и разведки нефтяных и газовых месторождений
- •Геологические методы исследований
- •5.1.4. Полевые геофизические методы исследовании
- •5.1.5. Геохимические методы поисков и разведки
- •5.1.6. Буровые работы. Геолого-геофизические исследования скважин
- •5.2. Методы, этапы и стадии
- •5.2.1. Региональные работы
- •5.2.2. Стадии подготовки площадей к глубокому поисковому бурению
- •5.2.3. Поисковое бурение
- •Скважины: 1 —поисковые;
- •5.2.5. Особенности разведки газовых и газоконденсатных месторождений
- •5.2.6. Доразведка нефтяных и газовых месторождений в процессе их разработки
- •5.2.7. Промышленная оценка открытых месторождений нефти и газа
- •5.2.8. Оценка эффективности геологоразведочных работ на нефть и газ
- •Глава 6. Нефтегазопромысловая
- •Методы изучения геологических разрезов
- •Цели и задачи нефтегазопромысловой геологии
- •Методические задачи;
- •Методологические задачи.
- •6.1.2. Методы изучения геологических разрезов и технического состояния скважин
- •6.1.3. Геологические методы исследования скважин
- •6.1.4. Рациональный комплекс геофизических исследований для различных категорий скважин
- •6.1.5. Геохимические методы изучения разрезов скважин
- •6.1.6. Основные принципы выделения продуктивных
- •6.1.7. Построение геолого-геофизических разрезов скважин
- •6.1.8. Вскрытие, опробование продуктивных пластов и испытание скважин
- •6.2. Методы изучения залежей нефти
- •6.2.1. Корреляция разрезов скважин
- •6.2.2. Составление корреляционных схем
- •6.2.3. Учет искривления скважин
- •6.2.4. Построение геологических профилей
- •6.2.5. Составление типового и сводного разрезов
- •6.2.6. Выделение коллекторов в однородных и неоднородных продуктивных пластах
- •6.2.7. Построение карты поверхности топографического порядка
- •6.2.8. Определение границ распространения коллекторов и построение карты эффективной мощности продуктивного пласта
- •6.2.9. Особенности построения структурных карт продуктивного пласта
- •6.2.10. Определение границ распространения залежей
- •6.2.11. Количественная оценка геологической неоднородности
- •6.3. Режимы залежей нефти и газа
- •6.3.1. Основные источники энергии в пластах
- •6.3.2. Давление в нефтяных и газовых залежах
- •6.3.3. Режимы нефтяных залежей
- •6.3.4. Режимы газовых залежей
- •6.4. Методы подсчета запасов нефти и газа
- •6.4.1. Классификация запасов месторождений нефти и газа
- •6.4.2. Методы подсчета запасов нефти
- •Возможные максимальные коэффициенты нефтеотдачи при вытеснении нефти водой
- •Коэффициенты нефтеотдачи при режиме растворенного газа
- •6.4.3. Методы подсчета запасов газа
- •6.4.4. Принципы подсчета запасов сопутствующих компонентов
- •6.5. Геологические основы разработки нефтяных игазовых месторождений
- •Рациональные системы разработки
- •Геологические факторы, определяющие
- •6.5.3. Основные геолого-технологические факторы,
- •6.5.4. Геологическое обоснование систем разработки залежей нефти с заводнением
- •Скважин при внутриконтурном заводнении:
- •6.5.5. Геологическое обоснование методов повышения коэффициента извлечения нефти
- •6.5.6. Геологическое обоснование способов интенсификации работы скважин
- •6.5.7. Геологические особенности разработки газовых месторождений
- •Геологические особенности разработки газоконденсатных месторождений
- •Особенности проектирования систем разработки нефтяных и газовых залежей
- •6.6. Геолого-промысловый контроль за разработкой месторождения
- •6.6.1. Стадии процесса разработки нефтяных залежей
- •6.6.2. Методы геолого-промыслового контроля
- •6.6.3. Контроль за дебитами и приемистостью скважин
- •6.6.4. Изучение границ залежей, связанных с фациальной
- •6.6.5. Изучение положения внк в залежах с подошвенной водой
- •6.6.7. Учет показателей работы скважин. Документация
- •6.6.8. Геолого-промысловая документация
- •6.6.9. Пластовое и забойное давление при разработке залежей
- •6.6.10. Карты изобар
- •6.6.11. Перепады давления в пласте
- •Коэффициент гидропроводности
- •Коэффициент проводимости
- •Коэффициент провдимости
- •Глава 2. Основы минерологии, 67
- •Глава 3. Основы историчекой 91
- •Глава 4. Основы геологии 138
- •Глава 5. Поиск и разведка 223
- •Глава 6. Нефтегазопромысловая 268
- •Глава 2. Основы минерологии, 67
- •Глава 3. Основы историчекой 91
- •Глава 4. Основы геологии 138
- •Глава 5. Поиск и разведка 223
- •Глава 6. Нефтегазопромысловая 268
- •Стратиграфические
- •Глава 2. Основы минерологии, 67
- •Глава 3. Основы историчекой 91
- •Глава 4. Основы геологии 138
- •Глава 5. Поиск и разведка 223
- •Глава 6. Нефтегазопромысловая 268
- •Нефтегазоносные провинции 165
- •Понятие о нефтегазоносных провинциях
- •Нефтегазоносные провинции и области России
- •Глава 2. Основы минерологии, 67
- •Глава 3. Основы историчекой 91
- •Глава 4. Основы геологии 138
- •Глава 5. Поиск и разведка 223
- •Глава 6. Нефтегазопромысловая 268
- •Глава 2. Основы минерологии, 67
- •Глава 3. Основы историчекой 91
- •Глава 4. Основы геологии 138
- •Глава 5. Поиск и разведка 223
- •Глава 6. Нефтегазопромысловая 268
- •Определение границ распространения
- •Глава 2. Основы минерологии, 67
- •Глава 3. Основы историчекой 91
- •Глава 4. Основы геологии 138
- •Глава 5. Поиск и разведка 223
- •Глава 6. Нефтегазопромысловая 268
- •Геологические особенности разработки
- •Глава 2. Основы минерологии, 67
- •Глава 3. Основы историчекой 91
- •Глава 4. Основы геологии 138
- •Глава 5. Поиск и разведка 223
- •Глава 6. Нефтегазопромысловая 268
- •Геология
- •400048, Г. Волгоград, пр. Жукова, 135, офис 10.
- •Отпечатано с электронных носителей издательства.
1.1.2. Галактика
Солнечная система является частью более крупной системы, называемой звездным скоплением. Оно, в свою очередь, представляет собой составную часть еще более крупной системы звезд, звездных скоплений и ассоциаций, газовых и пылевых туманностей, отдельных атомов и частиц, рассеянных в межзвездном пространстве, называемое — Галактикой. В состав нашей Галактики входят звездные скопления Млечного Пути. В нем насчитывается более сотни миллиардов звезд. Он представляет собой гигантское спиралеобразное скопление звезд в форме линзы. Солнце — сравнительно небольшая по размерам звезда. Его масса в 2,3 раза меньше массы средней звезды Галактики.
Расстояние между звездами измеряется в световых годах. Световой год — это путь, пройденный светом за один год. В поперечнике размер Галактики достигает 100 тыс. световых лет.
Тела каждой звездной системы связаны силами взаимного притяжения и имеют общее движение в пространстве. Все тела, входящие в состав Галактики, движутся вокруг ее оси, проходящей через центральную часть Млечного Пути, в созвездии Стрельца. Полный оборот вокруг оси Галактика совершает более чем за 200 млн. лет.
1.1.3. Строение Вселенной
В настоящее время твердо установлено, что Вселенная состоит из галактик, подобно нашей, объединенных в скопления и сверхскопления. Галактики и их скопления удаляются друг от друга, обусловливая расширение Вселенной. Скорость разлета галактик возрастает с увеличением расстояния между ними. Рассчитано, что от начала расширения Вселенной нас отделяет 10 млрд. лет. До этого ее вещество находилось в горячем состоянии в виде почти однородной расширяющейся плазмы. К такому выводу ученые пришли в результате открытия в 60-х годах реликтового высокотемпературного электромагнитного излучения, оставшегося от начала расширения Вселенной. Революционным с точки зрения познания Вселенной следует считать установление советскими учеными, возглавляемыми В.А. Любимовым (1980 г.), факта отличия от нуля массы покоя электронных нейтрино. Полученная величина 6* 10 32 г еще подлежит тщательной проверке, однако это открытие уже сейчас позволило астрофизикам следующим образом представить гипотезу развития и строения Вселенной с учетом тяготения нейтрино (И. Новиков, 1980 г.).
В первые мгновения расширения плазмы под действием гравитационной неустойчивости в ней образовались случайные маленькие сгустки. Уже через секунду снижение плотности расширяющихся сгустков позволило нейтрино, обладавшим в этот период огромной энергией, вылетать из них с околосветовой скоростью. Это привело к сглаживанию образующихся неоднородностей в распределении нейтрино. Такое сглаживание могло иметь место до тех пор, пока скорость нейтрино позволяла им вылетать из расширяющихся сгустков. Ученые оценивают этот период в 300 лет, а размеры участков, на которых произошло выравнивание, соответственно в 300 световых лет. Падение скорости нейтрино на больших расстояниях не позволило им покинуть пределы расширяющихся сгустков. Нейтрино скапливались в них, а сами сгустки усиливались тяготением, уплотнялись, расширялись, тем самым давая начало отдельным облакам из нейтрино. Естественно, масса этих облаков в сфере радиусом 300 световых лет при указанной выше массе покоя нейтрино составит 10 16 солнечных масс, что почти в 30 раз больше общей массы всех скоплений галактик, оцениваемой в 3 • 1013 солнечных масс.
Академик Я.Б. Зельдович убедительно доказал, что возникающие подобным образом облака должны были быть сплюснутыми, по форме напоминающие блины. Хаотично располагаясь в пространстве, невидимые нейтринные облака — «блины» создают ячеистую структуру, влияющую на формирование пространственных структур обычного вещества Вселенной, т.е. галактик, их скоплений, сверхскоплений.
Первоначально обычное вещество Вселенной (кроме нейтрино) представляло собой горячую плазму. Расширяясь, плазма охлажда-
лась и постепенно превращалась в нейтральный газ. К концу первого миллиона лет с начала расширения давление в нейтральном газе упало, и дальнейшая его эволюция происходила под влиянием поля тяготения возникающих нейтринных облаков. Нейтральный газ стягивался к их центральной части, постепенно сгущался, тем самым давая начало будущим звездам, галактикам и их скоплениям. Так как масса и средняя плотность последних во Вселенной в 30 раз меньше этих же параметров электронных нейтрино, то расположение и движение галактик и их скоплений должно определяться невидимыми нейтринными облаками.
Действительно, наблюдениями советских астрономов во главе с Я.Э. Эйнасто и ряда американских ученых установлено, что скопления и сверхскопления галактик во Вселенной сосредоточены в тонких слоях, имеющих ячеистую структуру, что согласуется с гипотезой об ее связи с ячеистой структурой нейтринных облаков.
Изучение квантов реликтового излучения позволило установить однородность Вселенной на участках с размерами в сотни миллионов световых лет. Это в свою очередь дало ответ на одну из принципиальных проблем: крупнейшей структурной единицей Вселенной является сверхскопление галактик с размерами в десятки миллионов световых ле г.