- •В.В. Лазарев геология
- •Глава 1. Основы общей геологии
- •Солнечная система
- •1.1.2. Галактика
- •1.1.3. Строение Вселенной
- •1.1.4. Методы изучения Вселенной
- •1.1.6. Специальные термины
- •1.2. Общая характеристика Земли
- •1.2.1. Форма и размеры Земли
- •Понятие о массе и плотности Земли
- •Магнетизм Земли
- •1.2.4. Теплота Земли
- •1.2.5. Специальные термины
- •1.3. Строение Земли
- •1.3.1. Внешние оболочки Земли
- •1.3.2. Внутренние оболочки и ядро Земли
- •1.3.3. Гипотеза о возникновении земной коры
- •1.4. Физическая жизнь земной коры
- •1.4.1. Общая характеристика геологических процессов
- •Экзогенные процессы
- •Выветривание (гипергенез)
- •1.4.4. Денудация
- •Геологическая деятельность ветра
- •Геологическая деятельность поверхностных текущих вод
- •1.4.4.3. Геологическая деятельность подземных вод
- •1.4.4.4. Геологическая деятельность ледников
- •Классификация морен по гранулометрическому составу
- •1.4.4.5. Многолетняя (вечная) мерзлота
- •1.4.4.6. Общие сведения о Мировом океане
- •1.4.4.7. Основные черты рельефа дна океана
- •1.4.4.8. Геологическая деятельность моря
- •1.4.4.9. Понятие о фациях
- •1.4.5. Эндогенные геологические процессы
- •1.4.5.1. Тектонические процессы
- •1.4.5.2. Магматические процессы
- •Метаморфические процессы
- •Землетрясения
- •Глава 2. Основы минерологии,
- •2.1. Общие сведения о минералогии
- •2.1.1. Понятие о минералах
- •2.1.2. Физические свойства минералов
- •2.1.3. Классификация минералов, их характеристика
- •2.1.4. Породообразующие минералы
- •2.2. Основы петрографии
- •2.2.1. Общие сведения о горных породах
- •2.2.2. Магматические породы
- •2.2.3. Осадочные породы
- •2.2.4. Метаморфические породы
- •Глава 3. Основы историчекой
- •Основы исторической геологии
- •Методы исторической геологии
- •Фации и формации комплексов горных пород
- •Стратиграфические и геохронологические подразделения
- •Глава 2. Основы минерологии, 67
- •Глава 3. Основы историчекой 91
- •Глава 4. Основы геологии 138
- •Глава 5. Поиск и разведка 223
- •Глава 6. Нефтегазопромысловая 268
- •3.1.4. Определения возраста Земли и горных пород
- •3.1.5. Развитие органического мира и тектонические движения Земли
- •3.2. Основы структурной геологии
- •3.2.1. Основные элементы структуры литосферы
- •3.2.2. Основные формы залегания горных пород
- •3.2.4 Развитие структур земной коры
- •3.2.5. Спрединг океанического дна
- •3.2.6. Тектоника литосферных плит
- •Глава 4. Основы геологии
- •Нефть и природный газ
- •4.1.2. Нефть и природный газ — ценные природные ископаемые
- •4.1.3. Нефть, ее химический состав и свойства
- •4.1.4. Природный углеводородный газ
- •4.1.5. Воды нефтяных и газовых месторождений
- •Промысловая классификация подземных вод
- •4.1.6. Нефть как источник загрязнения окружающей среды
- •4.2. Условия залегания нефти
- •Промыслово-геологическая классификация нефти и газа (по м.И. Максимову, с изменениями)
- •4.2.2. Фильтрационные свойства пород-коллекторов
- •4.2.3. Нефте-, газо-, водонасыщенность пород-коллекторов
- •Глава 2. Основы минерологии, 67
- •Глава 3. Основы историчекой 91
- •Глава 4. Основы геологии 138
- •Глава 5. Поиск и разведка 223
- •Глава 6. Нефтегазопромысловая 268
- •4.2.4. Понятие о покрышках
- •4.2.5. Природные резервуары и ловушки
- •Залежи и месторождения нефти и газа
- •Образование и разрушение залежей нефти и газа
- •4.3. Нефтегазоносные провинции
- •4.3.1. Понятие о нефтегазоносных провинциях и областях
- •4.3.2. Нефтегазоносные провинции и области России и сопредельных государств
- •4.3.3. Волго-Уральская нефтегазоносная провинция
- •4.3.4. Тимано-Печорская нефтегазоносная провинция
- •4.3.5. Западно-Сибирская нефтегазоносная провинция
- •Глава 5. Поиск и разведка
- •Понятие о поиске и разведке месторождений нефти и газа
- •Методологические основы прогнозирования
- •Методы поисков и разведки нефтяных и газовых месторождений
- •Геологические методы исследований
- •5.1.4. Полевые геофизические методы исследовании
- •5.1.5. Геохимические методы поисков и разведки
- •5.1.6. Буровые работы. Геолого-геофизические исследования скважин
- •5.2. Методы, этапы и стадии
- •5.2.1. Региональные работы
- •5.2.2. Стадии подготовки площадей к глубокому поисковому бурению
- •5.2.3. Поисковое бурение
- •Скважины: 1 —поисковые;
- •5.2.5. Особенности разведки газовых и газоконденсатных месторождений
- •5.2.6. Доразведка нефтяных и газовых месторождений в процессе их разработки
- •5.2.7. Промышленная оценка открытых месторождений нефти и газа
- •5.2.8. Оценка эффективности геологоразведочных работ на нефть и газ
- •Глава 6. Нефтегазопромысловая
- •Методы изучения геологических разрезов
- •Цели и задачи нефтегазопромысловой геологии
- •Методические задачи;
- •Методологические задачи.
- •6.1.2. Методы изучения геологических разрезов и технического состояния скважин
- •6.1.3. Геологические методы исследования скважин
- •6.1.4. Рациональный комплекс геофизических исследований для различных категорий скважин
- •6.1.5. Геохимические методы изучения разрезов скважин
- •6.1.6. Основные принципы выделения продуктивных
- •6.1.7. Построение геолого-геофизических разрезов скважин
- •6.1.8. Вскрытие, опробование продуктивных пластов и испытание скважин
- •6.2. Методы изучения залежей нефти
- •6.2.1. Корреляция разрезов скважин
- •6.2.2. Составление корреляционных схем
- •6.2.3. Учет искривления скважин
- •6.2.4. Построение геологических профилей
- •6.2.5. Составление типового и сводного разрезов
- •6.2.6. Выделение коллекторов в однородных и неоднородных продуктивных пластах
- •6.2.7. Построение карты поверхности топографического порядка
- •6.2.8. Определение границ распространения коллекторов и построение карты эффективной мощности продуктивного пласта
- •6.2.9. Особенности построения структурных карт продуктивного пласта
- •6.2.10. Определение границ распространения залежей
- •6.2.11. Количественная оценка геологической неоднородности
- •6.3. Режимы залежей нефти и газа
- •6.3.1. Основные источники энергии в пластах
- •6.3.2. Давление в нефтяных и газовых залежах
- •6.3.3. Режимы нефтяных залежей
- •6.3.4. Режимы газовых залежей
- •6.4. Методы подсчета запасов нефти и газа
- •6.4.1. Классификация запасов месторождений нефти и газа
- •6.4.2. Методы подсчета запасов нефти
- •Возможные максимальные коэффициенты нефтеотдачи при вытеснении нефти водой
- •Коэффициенты нефтеотдачи при режиме растворенного газа
- •6.4.3. Методы подсчета запасов газа
- •6.4.4. Принципы подсчета запасов сопутствующих компонентов
- •6.5. Геологические основы разработки нефтяных игазовых месторождений
- •Рациональные системы разработки
- •Геологические факторы, определяющие
- •6.5.3. Основные геолого-технологические факторы,
- •6.5.4. Геологическое обоснование систем разработки залежей нефти с заводнением
- •Скважин при внутриконтурном заводнении:
- •6.5.5. Геологическое обоснование методов повышения коэффициента извлечения нефти
- •6.5.6. Геологическое обоснование способов интенсификации работы скважин
- •6.5.7. Геологические особенности разработки газовых месторождений
- •Геологические особенности разработки газоконденсатных месторождений
- •Особенности проектирования систем разработки нефтяных и газовых залежей
- •6.6. Геолого-промысловый контроль за разработкой месторождения
- •6.6.1. Стадии процесса разработки нефтяных залежей
- •6.6.2. Методы геолого-промыслового контроля
- •6.6.3. Контроль за дебитами и приемистостью скважин
- •6.6.4. Изучение границ залежей, связанных с фациальной
- •6.6.5. Изучение положения внк в залежах с подошвенной водой
- •6.6.7. Учет показателей работы скважин. Документация
- •6.6.8. Геолого-промысловая документация
- •6.6.9. Пластовое и забойное давление при разработке залежей
- •6.6.10. Карты изобар
- •6.6.11. Перепады давления в пласте
- •Коэффициент гидропроводности
- •Коэффициент проводимости
- •Коэффициент провдимости
- •Глава 2. Основы минерологии, 67
- •Глава 3. Основы историчекой 91
- •Глава 4. Основы геологии 138
- •Глава 5. Поиск и разведка 223
- •Глава 6. Нефтегазопромысловая 268
- •Глава 2. Основы минерологии, 67
- •Глава 3. Основы историчекой 91
- •Глава 4. Основы геологии 138
- •Глава 5. Поиск и разведка 223
- •Глава 6. Нефтегазопромысловая 268
- •Стратиграфические
- •Глава 2. Основы минерологии, 67
- •Глава 3. Основы историчекой 91
- •Глава 4. Основы геологии 138
- •Глава 5. Поиск и разведка 223
- •Глава 6. Нефтегазопромысловая 268
- •Нефтегазоносные провинции 165
- •Понятие о нефтегазоносных провинциях
- •Нефтегазоносные провинции и области России
- •Глава 2. Основы минерологии, 67
- •Глава 3. Основы историчекой 91
- •Глава 4. Основы геологии 138
- •Глава 5. Поиск и разведка 223
- •Глава 6. Нефтегазопромысловая 268
- •Глава 2. Основы минерологии, 67
- •Глава 3. Основы историчекой 91
- •Глава 4. Основы геологии 138
- •Глава 5. Поиск и разведка 223
- •Глава 6. Нефтегазопромысловая 268
- •Определение границ распространения
- •Глава 2. Основы минерологии, 67
- •Глава 3. Основы историчекой 91
- •Глава 4. Основы геологии 138
- •Глава 5. Поиск и разведка 223
- •Глава 6. Нефтегазопромысловая 268
- •Геологические особенности разработки
- •Глава 2. Основы минерологии, 67
- •Глава 3. Основы историчекой 91
- •Глава 4. Основы геологии 138
- •Глава 5. Поиск и разведка 223
- •Глава 6. Нефтегазопромысловая 268
- •Геология
- •400048, Г. Волгоград, пр. Жукова, 135, офис 10.
- •Отпечатано с электронных носителей издательства.
Классификация морен по гранулометрическому составу
Морена |
Состав, % |
||||
гравий |
песок |
мелкий песок |
пыль |
глина |
|
Гравелистая |
50 |
30 |
15 |
5 |
|
Песчаная |
25 |
35 |
30 |
10 |
|
Супесчаная |
15 |
25 |
40 |
15 |
5 |
Суглинистая |
15 |
20 |
35 |
25 |
5 |
Глинистая |
10 |
15 |
30 |
25 |
20 |
- 34 -
дались древние оледенения, развиты красно-бурые морены. Цвет таких морен обусловлен гидратацией и окислением железосодержащих минералов, входящих в состав моренной толщи. Встречаются морены, цвет которых целиком определяется окраской коренных горных пород. Примером могут служить голубые морены, наблюдаемые под Санкт-Петербургом. Они сформировались на синих глинах кембрийского возраста.
Мощность моренных отложений колеблется от нескольких метров до нескольких десятков метров. В понижениях рельефа мощность морен увеличивается, на возвышенностях — уменьшается. Наиболее мощные моренные отложения наблюдаются в Белоруссии, где на месте доледниковых низменностей накопились мощные моренные толщи в несколько сотен метров (до 350 м). Под Москвой мощность моренных отложений составляет 5— 15 м.
Наиболее интенсивно ледниковая аккумуляция проявляется в период отступания ледника, когда последний тает. При полном стаива- нии ледника возникают отложенные морены, которые обычно подразделяют на конечные и основные. Конечные морены возникают у края ледникового языка. В формировании конечных морен принимают участие поверхностные, внутренние и донные морены. Основные морены образуются из всех видов морен при полном стаивании ледника. Конечные морены имеют своеобразные формы в виде гряд, валов и холмов. Основные морены слагают моренно-равнинный или моренно-холмистый рельеф. Наряду с беспорядочно разбросанными холмами разной высоты встречаются среди моренных отложений ориентированные по направлению движения ледника продолговатые валы, называемые друмлинами. Они имеют длину от нескольких сотен метров до 1—2 км и высоту от нескольких метров до 10—20 м. В основании друмлинов обычно залегают скальные крепкие породы, сильно сглаженные ледником при его движении и послужившие упором для накопления за ними моренных отложений. В областях распространения ледников материкового типа наблюдаются целые друминные поля.
В результате таяния ледника возникают водные потоки, протекающие по дну ложа ледника и вытекающие из-под него. Эти водные потоки перерабатывают моренные отложения, преобразуя неслоистую массу в хорошо отсортированные толщи песков, галечников, суглинков и глин, отлагающихся подо льдом и впереди ледника. Такие отложения, создаваемые водно-ледниковыми потоками, носят название флювиогляциалъных. В результате значительного выноса флюви- огляциальных отложений за пределы ледника возникают зандровые поля — пологоволнистые равнины, сложенные песками с четко выраженной слоистостью, гравием и галькой.
Флювиогляциальные отложения слагают и другие своеобразные формы рельефа: озы — вытянутые до нескольких километров гряды, камы — изолированные возвышенности, состоящие из песчаногалечного материала.
- 35 -
Древние оледенения и причины их возникновения
Чтобы представить себе характер и масштабы геологической работы ледников, обратимся к прошлому Земли. Последнее крупное оледенение в геологической истории Земли произошло в четвертичный период, когда значительная часть суши Земли была занята ледниками покровного типа. Ледяная пустыня возникла на громадных пространствах Европы, Азии и Северной Америки. Толщина ледяного покрова достигала 2 км. Льды наступали с Полярного Урала, Скандинавии, Альп и других горных массивов. Ледником покровного типа были заняты огромные территории. Ледник доходил до широты Лондона, Берлина, Киева, Великих северо-американских озер.
Обшая площадь, занятая ледниками, составляла 45 млн. км2. Наступающие льды покрывали все новые и новые территории, оттесняя обитавших там животных к югу, уничтожая девственные леса, разрушая и перетирая горные породы.
По мнению различных ученых, в четвертичный период было от четырех до шести ледниковых эпох, разделенных периодами потепления климата (межледниковыми эпохами). Главными центрами оледенения в Европе являлись Скандинавский п-ов, Новая Земля и Полярный Урал.
На территории нашей страны выделяют несколько оледенений. Наиболее четко проявились пять оледенений: окское (в Европе ему соответствуетминдельское), днепровское (называемое такжерисским), московское, калининское и осташковское (вюрмское). Некоторые ученые калининское и осташковское оледенения объединяют под названием валдайского. Максимальным было днепровское оледенение.
В результате оледенений, разделенных межледниковыми эпохами потепления, в Европейской части нашей страны наблюдается ряд ледниковых образований: моренные и флювиогляциальные отложения, валуны и крупные окатанные и исштрихованные глыбы, так называемые бараньи лбы и курчавые скалы, а также характерные формы ледникового ландшафта: холмы и гряды конечных морен, озы, камы, друмлины, ледниковые озера и др.
Великое оледенение четвертичного периода было важнейшим событием в истории Земли. Ученые полагают, что мы сейчас живем в конце Великого оледенения Земли. Современные льды Гренландии и Антарктиды являются остатками оледенения. Обширные оледенения свойственны и другим, более древним периодам в истории нашей планеты. Имеются данные об оледенениях в каменноугольном, пермском и других более древних периодах.
По данным ученых, сейчас на Земле происходит потепление климата. Так, в Санкт-Петербурге среднегодовая температура повысилась за последние 100 лет более чем на 1 °С. Это равносильно перемещению города на 600—700 км к югу, т.е. на широту Москвы. Французские исследователи утверждают, что в Гренландии ледники убывают на 100 км3 в год.
- 36 -
Потепление идет неравномерно, сменяясь иногда периодами похолодания. Память людей хранит сведения о колебаниях климата. Известно, что норманны, приплывшие примерно 1000 лет тому назад к берегам Гренландии, увидели там цветущие луга на местах, где теперь лед и скалы.
Чем же вызвано современное потепление климата на Земле? По этому вопросу нет единого мнения ученых. Одни связывают потепление с увеличением углекислоты в атмосфере, другие — с ядерны- ми и термоядерными взрывами, третьи — с концентрацией метеоритной пыли вблизи нашей планеты. Как показали исследования международного геофизического года, современное потепление климата сопряжено в основном с колебанием солнечной активности.
Каковы же причины древних оледенений? Как отмечалось, помимо оледенения четвертичного периода, известны и более древние оледенения. В качестве доказательств оледенений ученые используют толщи так называемых шиллингов — древних уплотненных морен и ленточные глины озерно-ледникового происхождения, обнаруживаемые в разных по возрасту отложениях. По вопросу о причинах древних оледенений существует несколько гипотез как астрономического (космического), так и геологического порядка. Единого мнения не существует.
К числу причин космического характера относятся возможное уменьшение солнечной радиации, прохождение Солнца с семьей планет сквозь туманность. Некоторые ученые связывают похолодание климата с изменением угла наклона земной оси к плоскости эклиптики (угол, составленный плоскостью экватора с плоскостью земной орбиты) и периодическими изменениями эксцентриситета земной орбиты (расстояния между центром эллипса и его фокусом, т.е. точкой, в которой находится Солнце).
К возможным причинам похолодания климата, связанным с Землей и ее развитием, относятся, например, тектонические преобразования, происходящие в земной коре. Во время горообразовательных процессов значительные территории континентов поднимались, вследствие чего они подвергались охлаждению. В высоких горах создавались благоприятные условия для возникновения ледников, нарушалась циркуляция атмосферы и воды в земных бассейнах. Все это вело к похолоданию климата — происходило снижение среднегодовой температуры за счет увеличения суши и уменьшения площади морских бассейнов — коллекторов теплоты. Оледенения хорошо увязываются с горообразованием: после герцинского орогенеза происходят крупные каменноугольное и пермское оледенения, после альпийской складчатости — четвертичное оледенение.
Другие ученые в качестве возможной причины похолодания климата указывают на изменение интенсивности вулканической деятельности Земли. Причем одни из них говорят, что усиление вулканической деятельности ведет к повышению содержания в атмосфере
- 37 –
пылеватых частиц и уменьшению солнечной радиации, а другие отмечают, что уменьшение вулканической деятельности ведет к похолоданию в связи с меньшим выделением диоксида углерода в атмосферу. И наоборот, усиление вулканической деятельности ведет к значительному увеличению диоксида углерода, вызывающего потепление климата.
Таким образом, в настоящее время нет единого мнения о причинах похолодания климата и оледенений в истории Земли. По- видимому, наиболее благоприятные условия для оледенения возникают при сочетании ряда космических и геологических факторов.
