
- •Билет 1) 1. Адсорбция на границе твердое тело – газ
- •Теория мономолекулярной адсорбции Ленгмюра
- •Уравнение Фрейндлиха
- •2.Различают два конденсационных метода: физическая конденсация и химическая конденсация.
- •Физическая конденсация
- •Химическая конденсация
- •Теория бэт.
- •2. Мицеллой лиофобной системы называется гетерогенная микросистема, которая состоит из микрокристалла дисперсной фазы, окруженного сольватированными ионами стабилизатора.
- •1. С1 больше с2, и наоборот
- •- Степень дисперсности
- •Билет20)
Химическая конденсация
Это метод также основан на конденсационном выделении новой фазы из пересыщенного раствора. Однако в отличии от физических методов, вещество, образующее дисперсную фазу, появляется в результате химической реакции. Таким образом, любая химическая реакция, идущая с образованием новой фазы, может быть источником получения ультрамикрогетерогенных (коллоидных) систем.
Билет 2) 1.избирательное смачивание - контакт с твердым телом полярной и неполярной жидкостей (например, воды и бензола). Лиофильность и лиофобность характеристики способности веществ или образуемых ими тел к межмолекулярному взаимодействию с жидкостями. Интенсивное взаимодействие, т. е. достаточно сильное взаимное притяжение молекул вещества (тела) и контактирующей с ним жидкости, характеризует лиофильность; слабое взаимодействие — лиофобность. В наиболее практически важном случае взаимодействия вещества с водой лиофильность и лиофобность называется гидрофильностью и гидрофобностью, а в случае масел и жиров — олеофильностью (липофильностью) и олеофобностью. Понятия «лиофильный» и «лиофобный» относят к высокомолекулярным соединениям или к поверхностям различных тел, в том числе находящихся в коллоидно-дисперсном состоянии. Лиофильные и лиофобные дисперсные системы с жидкой дисперсионной средой различаются в зависимости от того, насколько близки или различны по своим свойствам дисперсная фаза и дисперсионная среда. В лиофильных дисперсных системах межмолекулярные взаимодействия по обе стороны разделяющей фазы поверхности различаются незначительно, поэтому удельная свободная поверхностная энергия (для жидкости - поверхностное натяжение) чрезвычайно мала (обычно сотые доли мДж/м2), межфазная граница (поверхностный слой) может быть размыта и по толщине нередко соизмерима с размером частиц дисперсной фазы. Лиофильные дисперсные системы термодинамически равновесны, они всегда высокодисперсны, образуются самопроизвольно и при сохранении условий их возникновения могут существовать сколь угодно долго. Типичные лиофильные дисперсные системы - микроэмульсии. некоторые полимер-полимерные смеси, мицеллярные системы ПАВ, Дисперсные системы с жидкокристаллическими дисперсными фазами. К лиофильным дисперсным системам часто относят также набухающие и самопроизвольно диспергирующиеся в водной среде минералы группы монтмориллонита, например, бентонитовые глины.
В лиофобных дисперсных системах межмолекулярное взаимодействие в дисперсионной среде и в дисперсной фазе существенно различно; удельная свободная поверхностная энергия (поверхностное натяжение) велика - от нескольких единиц до нескольких сотен (и тысяч) мДж/м2; граница фаз выражена достаточно четко. Лиофобные дисперсные системы термодинамически неравновесны; большой избыток свободной поверхностной энергии обусловливает протекание в них процессов перехода в более энергетически выгодное состояние. В изотермических условиях возможна коагуляция -сближение и объединение частиц, сохраняющих первоначальные форму и размеры, в плотные агрегаты, а также укрупнение первичных частиц вследствие коалесценции -слияния капель или пузырьков газа, собирательной рекристаллизации (в случае кристаллич. дисперсной фазы) или изотермич. перегонки (молекулярного переноса) вещества дисперсной фазы от мелких частиц к крупным (в случае дисперсных систем с жидкой дисперсионной средой - последний процесс называемый переконденсацией). Нестабилизованные и, следовательно, неустойчивые лиофобные дисперсные системы непрерывно изменяют свой дисперсный состав в сторону укрупнения частиц вплоть до полного расслоения на макрофазы. Однако стабилизованные лиофобные дисперсные системы могут сохранять дисперсность в течение длительного времени. Применение ПАВ: регулирование смачивания при флотации железных и марганцевых руд (мыла прир. и синтетич. жирных к-т, высшие алифатич. амины), руд редких металлов (алкиларсо-новые и алкилфосфоновые к-ты, алкилароматич. сульфонаты).
2.Диффузия - взаимное проникновение соприкасающихся веществ друг в друга вследствие теплового движения частиц вещества. Д. происходит в направлении падения концентрации вещества и ведёт к равномерному распределению вещества по всему занимаемому им объёму (к выравниванию химического потенциала вещества).
Билет 3) 1.Диспе́рсная систе́ма — это система, образованная из двух или более фаз (тел), которые совершенно или практически не смешиваются и не реагируют друг с другом химически. Первое из веществ (дисперсная фаза) мелко распределено во втором (дисперсионная среда). Если фаз несколько, их можно отделить друг от друга физическим способом (центрифугировать, сепарировать и т. д.). Вещество, которое присутствует в меньшем количестве, диспергирует и распределено в объеме другого, называют дисперсной фазой. Она может состоять из нескольких веществ.
Вещество, присутствующее в большем количестве, в объеме которого распределена дисперсная фаза, называют дисперсной средой.
2.Солюбилизация - коллоидное растворение, самопроизвольное и обратимое проникание какого-либо низкомолекулярного вещества (солюбилизата), слабо растворимого в данной жидкой среде, внутрь находящихся в ней мицелл поверхностно-активного вещества или молекулярных клубков (глобул) высокомолекулярного соединения. С. характерна для полуколлоидных систем типа водных растворов мыл и синтетических моющих веществ при концентрациях выше критической концентрации мицеллообразования, а также для растворов белков и некоторых синтетических полимеров. В системах с водной средой происходит С. масел, жиров, гидрофобных органических жидкостей, а в системах с углеводородной средой — воды, реже других полярных веществ.
С. играет важную роль во многих технологических процессах: при получении синтетических каучуков путём эмульсионной (латексной) полимеризации, в мицеллярном катализе, при стирке текстильных изделий, приготовлении смазочно-охлаждающих жидкостей, пестицидных препаратов, некоторых лекарственных средств, пищевых продуктов и пр. Важна С. и в биологических процессах, например при пищеварении жиры солюбилизируются веществами жёлчи. Моющее действие - совокупность физико-химических процессов, приводящих к очистке поверхности твёрдых тел от загрязнений. М. д. характерно для полуколлоидных систем типа водных растворов (правильнее — гидрозолей) мыл, синтетических моющих веществ и некоторых природных соединений. Согласно представлениям П. А. Ребиндера, «комплекс М. д.» включает Смачивание, пептизацию, эмульгирование и стабилизацию загрязнений в виде высокодисперсной фазы — мельчайших капелек или твёрдых частиц, равномерно распределённых в моющем растворе. М. д. обусловлено наличием в системе поверхностно-активных веществ, способных создавать вокруг частиц (капель) дисперсной фазы и на очищаемой поверхности так называемый адсорбционно-сольватный защитный слой. Высокая поверхностная активность таких веществ необходима для эффективного диспергирования и отделения загрязнений от очищаемой поверхности (подложки, субстрата). Защитный слой препятствует укрупнению частиц загрязнений, перешедших в моющий раствор, и повторному их налипанию (ресорбции) на отмытую поверхность.
Билет 4) 1.Если твердый адсорбент, несущий на своей поверхности двойной ионный слой, поместить в раствор электролита, то противоионы этого адсорбента будут обмениваться на ионы того же знака из раствора. Такой процесс называют ионообменной адсорбцией, а твердые адсорбенты, способные к ионному обмену – ионообменниками или ионитами. Применение: Процесс удобрения почвы минеральными удобрениями также связан с ионным обменом. Типичными примерами неорганических природных ионообменников являются цеолиты - кристаллические силикаты. В результате специальной обработки такие вещества приобретают пористую структуру, на поверхности пор в которых располагаются ионы щелочных и щелочноземельных металлов, способных выступать в качестве ионообменных. Недостатком природных ионообменников является их малая механическая прочность, препятствующая широкому применению. Поэтому они находят применение в тех случаях, где не требуется высокой механической прочности. Например, в качестве умягчителей воды в бытовых синтетических моющих средствах.
2.Основное упрощение теории ДЛФО состоит в том, что на частицы действуют две силы. Одна из них – взаимное притяжение частиц, создаваемое дисперсионными силами. Энергия дисперсионного притяжения, отнесенная к единице площади поверхности определяется выражением
(1)
где А* – сложная константа Гамакера, h – ширина зазора между частицами. Знак минут указывает на взаимное притяжение частиц. Вторая сила – ионно-электростатическое отталкивание, возникающее за счет перекрывания диффузных частей двойных электрических слоев, окружающих частицы. При перекрывании двойных слоев для сближения частиц надо совершить дополнительную работу по концентрированию противоионов в тонкой пленке раствора электролита в зазоре между частицами. Энергия электростатического отталкивания на достаточно больших расстояниях определяется выражением:
(2)
где n0 – концентрация электролита, k – постоянная Больцмана, Т – температура, æ – обратная эффективная толщина ионной атмосферы, γ= th(zeφ0/4kT) (ze – заряд ионов, φ0 – потенциал поверхности).
Билет 5) 1.Флота́ция - один из методов обогащения полезных ископаемых, который основан на различии способности минералов удерживаться на межфазовой поверхности, обусловленный различием в удельных поверхностных энергиях. Гидрофобные (плохо смачиваемые водой) частицы минералов избирательно закрепляются на границе раздела фаз, обычно газа и воды, и отделяются от гидрофильных (хорошо смачиваемых водой) частиц. При флотации пузырьки газа или капли масла прилипают к плохо смачиваемым водой частицам и поднимают их к поверхности. Флотация применяется также для очистки воды от органических веществ и твёрдых взвесей, разделения смесей, ускорения отстаивания в химической, нефтеперерабатывающей, пищевой и др. отраслях промышленности.
2.При осаждении частиц возникает градиент их концентрации, направленный по направлению силы тяжести, такой градиент приводит к диффузии частиц в направлении их меньшей концентрации, то есть в направлении, обратном направлению седиментации; при этом возможно состояние, когда седиментационный и диффузионный потоки взаимно уравновешиваются — наступает седиментационно-диффузное равновесие, описываемое барометрической формулой ( гипсометрический закон лапласа):
Билет 6) 1. Адсорбция на границе жидкость-газ.
Из-за однородности и гладкости поверхности любой жидкости, при изучении адсорбции на ее поверхности неприемлемы представления об активных центрах (сорбция Лэнгмюра). Очевидно, из-за равноценности всех участков поверхности жидкости и теплового движения ее молекул нельзя также говорить о каком-нибудь закреплении молекул адсорбтива в определенных местах.
Целесообразнее рассматривать явления с термодинамических позиций и связывать адсорбцию растворимого вещества с изменением свободной энергии поверхности или ее поверхностного потенциала.
Фактором интенсивности поверхностной энергии является поверхностное натяжение, обусловленное нескомпенсированным полем межмолекулярных сил на межфазной поверхности.
Поверхностное натяжение является следствием существования внутреннего давления - силы втягивающей молекулы внутрь жидкости и направленной перпендикулярно поверхности. Внутреннее давление тем выше, чем полярнее вещество, так что причиной его является действие молекулярных сил.
Для определения поверхностного натяжения на границе жидкость-газ или жидкость пар применяют метод капиллярного поднятия, взвешивания или счета капель, наибольшего давления пузырьков, отрыва кольца и другие.
При рассмотрении поверхностного натяжения на границе жидкость-газ или жидкость-пар, вследствие большой разряженности газа или пара, взаимодействием между молекулами жидкости и газа или пара можно пренебречь. Этого нельзя сделать в случае поверхностного натяжения на границе жидкость-жидкость. Наличие над первой жидкостью слоя другой, несмешивающейся с ней жидкостью приводит к понижению межфазного поверхностного натяжения, поскольку молекулы второй жидкости притягивают к себе молекулы первой и таким образом, уменьшают действие нескомпенсированных сил на поверхности первой жидкости.
2. Поглощение света - уменьшение интенсивности оптического излучения (света), проходящего через материальную среду, за счёт процессов его взаимодействия со средой. Световая энергия при П. с. переходит в различные формы внутренней энергии среды; она может быть полностью или частично переизлучена средой на частотах, отличных от частоты поглощённого излучения.
Основной закон, описывающий П. с., — закон Бугера l=l*lo^-kel , который связывает интенсивности I света, прошедшего слой среды толщиной l, и исходного светового потока I0. Не зависящий от I, I0и l коэффициент kl называется поглощения показателем (ПП, в спектроскопии — поглощения коэффициентом); как правило, он различен для разных длин света l.
Билет7) 1. Исследования адсорбции из жидких растворов обычно осложнены тем, что при контакте раствора с твердым адсорбентом всегда возможна сорбция всех компонентов, что влияет на характер изотермы адсорбции. Если рассматривать лишь двухкомпонентный раствор, то для каждого из компонентов раствора будет своя индивидуальная изотерма, совокупность которых и определяет вид обобщенной изотермы. Обычно количество адсорбированного вещества рассчитывают по изменению концентрации раствора, которое измеряют подходящим химическим методом анализа концентрации растворенного вещества или интерферометрически (для неокрашенных растворов), спектроскопически (для веществ, имеющих характеристические полосы поглощения света), по изменению величины поверхностного натяжения (для ПАВ) или по интенсивности радиоактивного излучения, если исследуемое вещество имеет радиоактивную метку. При больших значениях удельной активной поверхности адсорбента и, соответственно, значительной адсорбции можно определять непосредственно гиббсовский поверхностный избыток весовым методом. Аналогичные данные можно получить по интенсивности радиоактивного излучения адсорбционного слоя.
правило Фаянса — Пескова — Панета гласит о том, что на поверхности твёрдого вещества преимущественно адсорбируются ионы, которые могут достраивать кристаллическую решётку, то есть входят в её состав, изоморфны или образуют труднорастворимое соединение с ионами, составляющими кристаллическую решётку. Эта формулировка применяется для определении знака заряда поверхности при образовании ДЭС в коллоидной химии.
2. Суть теории: между любыми частицами при их сближении возникает расклинивающее давление разделяющей жидкой прослойки в результате действия сил притяжения и отталкивания. Расклинивающее давление является суммарным параметром, учитывающим действие как сил притяжения, так и сил отталкивания.
Состояние системы зависит от баланса энергии притяжения (Uпр) и энергии отталкивания (Uотт). Преобладает Uотт – устойчивая система. Преобладает Uпр - нарушение агрегативной устойчивости – коагуляция.
Суммарную энергию системы из двух частиц (кривая 3) получают сложением Uотт и Uпр:
U=Uотт+Uпр = B*e^-Oh – A/h
где: В – множитель, зависящий от значений электрических потенциалов ДЭС, свойств среды, температуры;
е – основание натурального логарифма;
– величина, обратная толщине диффузного слоя;
h – расстояние между частицами;
А – константа молекулярных сил притяжения.
Билет8)1..Теория полимолекулярной адсорбции Поляни. Основные положения
1. Адсорбция обусловлена чисто физическими силами (силами Ван-дер-Ваальса). Основной вклад вносят дальнодействующие дисперсионные силы аддитивные и не зависящие от температуры.
2. На поверхности адсорбента нет активных центров (энергетически однородная поверхность).
3. Адсорбционные силы действуют на больших расстояниях, что приводит к образованию полимолекулярного слоя. По мере удаления от поверхности действие адсорбционных сил уменьшается и на некотором расстоянии практически становится равным нулю.
4. Адсорбционные силы не зависят от температуры.
5. Практически все адсорбированное вещество на поверхности адсорбента находится в жидком состоянии.
В теории проводится аналогия между адсорбцией и конденсацией пара. Предполагается, что в результате взаимодействия с поверхностью газ сжимается до давления насыщения рS и переходит в жидкость. При этом возникает адсорбционный объем жидкости Vадс, который связан с ве личиной адсорбции соотношением: Vадс = А·Vm,где А – значение адсорбции в моль, Vm. – мольный объем адсорбата в конденсированном состоянии (объем 1 моль жидкого адсорбата).Адсобционный потенциал: Е=RTln(ps/p), где рS – насыщенное давление газа (пара) при данной температуре
(константа для каждого газа), р – равновесное давление в объемной фазе вдали от поверхности.Зависимость адсорбционного потенциала (ε) от адсорбционного объема (Vадс) Поляни назвал характеристической кривой. Характеристическая кривая не зависит от температуры и индивидуальна и характерна для каждого вида адсорбента для сходных адсорбатов. Характер характеристической кривой, построенной по экспериментальным данным (кривая,убывающая), не зависит от температуры.