
- •О.В. Савилова Гидромеханика
- •Оглавление
- •Тема 1. Жидкости и газы, их свойства________________8
- •Тема 2. Гидростатика______________________________19
- •Тема 3 Основы гидродинамики______________________43
- •Тема 4 Ламинарное течение жидкости в круглых
- •Тема 5 Турбулентное течение жидкости в круглых
- •Тема 6 Местные гидравлические сопротивления_______81
- •Тема 7 Истечение жидкости через отверстия и насадки_89
- •Тема 8 Гидравлический расчет трубопроводов________99
- •Введение
- •Тема 1 Жидкости и газы, их свойства
- •Определение жидкости
- •Основные свойства жидкостей и газов
- •Силы, действующие в жидкости
- •Тема 2 Гидростатика
- •2.1 Гидростатическое давление и его свойства
- •2.2. Основное уравнение гидростатики
- •2.3 Закон Паскаля и его техническое применение
- •2.4 Дифференциальные уравнения Эйлера равновесия жидкости
- •2.5 Абсолютное и избыточное давление. Вакуум
- •2.6 Приборы для измерения давления в жидкости
- •2.7 Сообщающиеся сосуды
- •2.8 Сила давления жидкости на плоские стенки
- •2.9 Закон Архимеда и его приложение
- •2.10. Поверхности равного давления
- •2.11 Сила давления жидкости на криволинейную стенку
- •Тема 3. Основы гидродинамики
- •3.1 Понятия и определения
- •3.1.1 Виды движения жидкости
- •3.1.2 Элементы потока жидкости.
- •3.1.3 Гидравлические параметры потока жидкости
- •3.2 Уравнение неразрывности или уравнение расхода
- •3.3 Режимы движения жидкости. Опыты Рейнольдса
- •3.4. Кавитация
- •3.5 Уравнение Бернулли для элементарной струйки идеальной жидкости
- •3.6. Уравнение Бернулли для реальной жидкости
- •3.7. Измерение скорости потока и расхода жидкости
- •3.8 Общие сведения о гидравлических сопротивлениях
- •Тема 4 Ламинарное течение жидкости в круглых трубах
- •4.1 Уравнение равномерного движения жидкости в круглой трубе
- •4.2. Расход, средняя скорость и потери напора при ламинарном течении жидкости в круглой трубе
- •Тема 5 Турбулентное течение жидкости в круглых трубах
- •5.1 Основные сведения
- •5.2 Распределение скоростей по живому сечению круглой трубы
- •5.3 Структура турбулентного потока жидкости в круглой трубе
- •5.4 Шероховатость стенок труб
- •5.5 Гидравлически гладкие и гидравлически
- •5.6 Потери напора по длине трубы
- •5.7 Опыты и. И. Никурадзе
- •Тема 6. Местные гидравлические сопротивления
- •Внезапное расширение русла.
- •Постепенное расширение русла.
- •6.3. Внезапное сужение русла.
- •Постепенное сужение русла.
- •Внезапный поворот трубы (колено).
- •6.6. Постепенный поворот трубы (закругленное колено или отвод).
- •6.7 Принцип сложения потерь напора.
- •6.8. Выражение полных потерь напора в виде степенной функции расхода
- •Тема 7 Истечение жидкости через отверстия и насадки
- •7.1 Истечение жидкости через малое отверстие в тонкой стенке при постоянном напоре
- •7.2. Истечение жидкости через насадки при постоянном напоре
- •7.3 Истечение жидкости через затопленное отверстие или насадок, или истечение под уровень
- •7.4 Применение отверстий и насадков
- •7.5 Истечение жидкости через отверстие или насадок при
- •7.6 Взаимодействие струи с твердой преградой
- •Тема 8 Гидравлический расчет трубопроводов
- •8.1 Классификация трубопроводов
- •8.2 Простой трубопровод постоянного сечения
- •8.3 Самотечный трубопровод
- •8.4 Сифонный трубопровод
- •8.5 Основы технико-экономического расчёта простых трубопроводов
- •8.6 Последовательное соединение трубопроводов
- •8.7 Параллельное соединение трубопроводов
- •8.8 Разветвленное соединение.
- •8.9. Сложные трубопроводы
- •8.10. Трубопроводы с насосной подачей жидкостей
- •8.11 Гидравлический удар в напорных трубопроводах
- •8.11.1 Явление гидравлического удара
- •8.11.2 Скорость распространения ударной волны
- •8.11.3 Определение повышения давления при гидравлическом ударе
- •8.11.4 Меры, предотвращающие возникновение гидравлического удара
- •8.11.5 Использование гидравлического удара
- •8.12 Равномерное движение жидкости в открытых руслах
- •8.13. Формулы для определения коэффициента Шези с
- •Библиографический список
6.3. Внезапное сужение русла.
В этом случае потеря напора обусловлена трением потока при входе в более узкую трубу и потерями на вихреобразование, которые образуются в кольцевом пространстве вокруг суженой части потока (рис.53).
Рис. 53. Внезапное сужение трубы |
54. Конфузор |
Полная потеря напора определится по формуле,
где коэффициент сопротивления сужения определяется по полуэмпирической формуле И.Е. Идельчика:
в которой n = S1/S2 - степень сужения.
При выходе трубы из резервуара больших размеров, когда можно считать, что S2/S1 = 0, а также при отсутствии закругления входного угла, коэффициент сопротивления ζсуж = 0,5.
Постепенное сужение русла.
Данное местное сопротивление представляет собой коническую сходящуюся трубу, которая называется конфузором (рис.54). Течение жидкости в конфузоре сопровождается увеличением скорости и падением давления. В конфузоре имеются лишь потери на трение
где коэффициент сопротивления конфузора определяется по формуле
в которой n = S1/S2 - степень сужения.
Небольшое вихреобразование и отрыв потока от стенки с одновременным сжатием потока возникает лишь на выходе из конфузора в месте соединения конической трубы с цилиндрической. Закруглением входного угла можно значительно уменьшить потерю напора при входе в трубу.
Конфузор с плавно сопряженными цилиндрическими и коническими частями называется соплом (рис.55).
Рис. 55. Сопло
Внезапный поворот трубы (колено).
Данный вид местного сопротивления (рис.56) вызывает значительные потери энергии, т.к. в нем происходят отрыв потока и вихреобразования, причем потери тем больше, чем больше угол δ. Потерю напора рассчитывают по формуле
где ζкол - коэффициент сопротивления колена круглого сечения, который определяется по графику в зависимости от угла колена δ (рис.58).
Рис. 56. |
Рис. 57. Зависимости ζкол от угла δ |
Рис. 58. Отвод |
6.6. Постепенный поворот трубы (закругленное колено или отвод).
Плавность поворота значительно уменьшает интенсивность вихреобразования, а следовательно, и сопротивление отвода по сравнению с коленом. Это уменьшение тем больше, чем больше относительный радиус кривизны отвода R / d рис.58). Коэффициент сопротивления отвода ζотв зависит от отношения R / d, угла δ, а также формы поперечного сечения трубы.
Для
отводов круглого сечения с углом δ= 90
и R/d
1
при турбулентном течении можно
воспользоваться эмпирической формулой:
Для
углов δ
70°
коэффициент сопротивления
а при δ 100°
Потеря напора в колене определится как
Все выше изложенное относится к турбулентному движению жидкости. При ламинарном движении местные сопротивления играют малую роль при определении общего сопротивления трубопровода. Кроме этого закон сопротивления при ламинарном режиме является более сложным и исследован в меньшей степени.