
- •Лабораторная работа 1 макроструктура и изломы сталей и сплавов Цель работы
- •Описание лабораторного оборудования и приборов
- •Охрана труда
- •Методика выполнения работы
- •- Усадочная раковина; 2 - мелкозернистая
- •Металла
- •Практические задания
- •Задание 1. Выявление ликвации методом серного отпечатка
- •Задание 4. Выявление газовых пузырей, волокнистости стали методом глубокого травления
- •Задание 5. Выявление первичной кристаллической структуры алюминиевых сплавов
- •Лабораторная работа 2 микроструктура углеродистых сталей и чугунов
- •Диаграмма состояния железоуглеродистых сплавов
- •Диаграмма состояния Fe - Fe3c показывает равновесную структуру сталей и белых чугунов в зависимости от температуры и концентрации элементов (рис. 2.2).
- •Микроструктура сталей
- •Микродефекты сталей в структуре стали встречаются различные микродефекты ( рис. 2.4).
- •Микроструктура чугунов
- •Методика выполнения работы
- •Правило фаз
- •Примеры
- •Правило отрезков
- •Примеры применения правила отрезков
- •Краткие сведения из теории
- •Структурные превращения в стали при нагреве
- •Изотермического;
- •Влияние величины зерна на механические свойства стали
- •Основы термической обработки
- •После полного отжига (а) и нормализации (б) Нормализация
- •Закалка
- •Мартенситная диаграмма
- •Отпуск стали
- •Низкий отпуск
- •Средний отпуск
- •Высокий отпуск
- •Полной закалки и высокого
- •Методика выполнения работы
- •Измерение твердости
- •Практические задания Задание 1. Изучение влияния охлаждающей среды (скорости охлаждения) на твердость стали
- •Микроструктура и термическая обработка цветных сплавов Цель работы
- •Оборудование, приборы и материалы
- •Охрана труда
- •Краткие сведения из теории
- •42. Дуралюмин д16 после отжига 42'. Дуралюмин д16 после закалки
- •43. Латунь л70 после отжига 44. Титановый сплав вт3-1
- •48. Бронза оловянистая (литая) 49. Баббит б83 оловянный (α-твердый
- •Силумины
- •Медные сплавы
- •Например, БрОф6,5-0,4- бронза, содержащая 6,5% Sn и 0,5% р, остальное Cu. В литом состоянии эта бронза имеет марку БрО6,5ф0,4. Титановые сплавы
- •В маркировке титановых сплавов число – условный номер. Магниевые сплавы
- •Антифрикционные легкоплавкие сплавы – баббиты
- •Влияние термической обработки на структуру и свойства дуралюминов
- •Закалка
- •Старение
- •Методика выполнения работы
- •Полимеры
- •Термопласты и реактопласты
- •Пластмассы Пластмассы представляют собой искусственные материалы, получаемые на основе полимеров, которые выполняют в них роль связующих веществ.
- •Основные преимущества пластмасс и экономическая эффективность их применения
- •Композиционные материалы
- •Методика выполнения работы
- •Определение твердости композитов по методу Бринелля
Влияние величины зерна на механические свойства стали
Увеличение размера зерна аустенита незначительно влияет на прочностные свойства стали, но сильно снижает ее пластичность, ударную вязкость, усталостную долговечность. С уменьшением же размера зерна, как правило, повышается прочность, пластичность и вязкость. Поэтому лучшими механическими свойствами характеризуются мелкозернистые стали.
Основы термической обработки
Термическая обработка представляет собой процесс, состоящий из трех основных операций: нагрева, выдержки и охлаждения. Получаемая структура и механические свойства стали обусловливаются теми структурными превращениями, которые происходят при нагреве - в соответствии с диаграммой состояния железо-углерод (рис. 3.4, а) и при охлаждении - в соответствии с диаграммой изотермического распада аустенита (рис. 3.4, б).
а б
Рис. 3.4. Виды термической обработки стали У8 в зависимости от температуры
нагрева (а) и скорости охлаждения (б)
В зависимости от температуры нагрева по отношению к критическим точкам АС1, АС3 и Aсm (табл. 3,1) термическая обработка подразделяется на полную, неполную и низкотемпературную (рис. 3.4, а), а в зависимости от скорости охлаждения – на отжиг, нормализацию и закалку (рис. 3.4, б).
Таблица 3.1. Температуры критических точек некоторых сталей
Марка стали |
35 |
40 |
45 |
40Х |
45Г2 |
У8 |
У10 |
У12 |
9ХС |
ХВГ |
А1,ОС |
730 |
727 |
725 |
743 |
711 |
730 |
730 |
730 |
770 |
750 |
А3, Aсm, ОС |
802 |
788 |
770 |
782 |
765 |
- |
800 |
820 |
870 |
940 |
Отжиг
Отжиг - разупрочняющая термическая обработка, состоящая из нагрева до температуры выше фазовых превращений, выдержки и медленного охлаждения (с печью) до заданных температур (например, для стали до 500-600 ОС) и далее на воздухе. Отжиг проводят с целью перекристаллизации структуры стали и максимального ее разупрочнения перед пластической деформацией или механической обработкой резанием.
Полный отжиг преимущественно применяется для доэвтектоидных сталей. Он состоит из нагрева выше температуры А3 на 30-50 ОС (см. рис. 3.4, а), выдержки и медленного охлаждения (с печью) до 500-600 ОС и далее на воздухе на структуру, состоящую из феррита и перлита (рис. 3.5, а).
Полный отжиг для заэвтектоидных сталей с нагревом выше Аcm не применяется, так как он приводит к образованию карбидной сетки, которая сильно повышает хрупкость стали (см. рис. 2.4, в).
Неполный отжиг преимущественно применяется для заэвтектоидных сталей. Он состоит из нагрева выше температуры A1, но ниже Асm и приводит к образованию структуры зернистого перлита (см. рис. 2.4, г). Охлаждение должно быть медленным, чтобы обеспечить сфероидизацию и коагуляцию образовавшихся карбидов при охлаждении до 650-620 ОС. Структура зернистого перлита характеризуется низкой твердостью, высокой пластичностью и вязкостью.
а б
Рис. 3.5. Микроструктура (феррит и перлит) стали 40