
- •Условная вероятность
- •Формула полной вероятности
- •Формула Байеса
- •15 Вероятность отклонения относительной частоты от постоянной вероятности в независимых испытаниях.
- •Действия над дискретными случайными величинами.
- •22. Дисперсия дискретной случайной величины. Основные понятия и определения.
- •23. Корреляционный момент. Лемма.
- •24. Основные свойства дисперсии.
- •25. Начальные и центральные моменты дискретной случайной величины.
- •26. Непрерывные случайные величины. Функция распределения.
- •27. Свойства функции распределения.
- •28. Плотности распределения вероятностей.
- •29. Непрерывная случайная величина, распределённая по нормальному закону. Правило трёх сигм.
- •30. Непрерывная случайная величина, равномерно распределённая в интервале (a,b).
- •31. Числовые характеристики непрерывной случайной величины.
- •32. Коэффициент корреляции. Коррелированность и зависимость случайных величин.
- •33. Задачи математической статистики.
- •34. Генеральная и выборочная совокупности.
- •35. Повторная и бесповторная выборки. Репрезентативная выборка.
- •36. Способы отбора.
- •37. Статическое распределение выборки.
- •38. Полигон и гистограммы.
- •39. Выборочное среднее.
- •Свойства выборочного среднего
- •40. Выборочная дисперсия и выборочное среднее квадратическое отклонение.
- •41. Коэффициент вариации, доверительные интервалы. Надёжность. Их зависимость.
- •42. Уравнение регрессии.
22. Дисперсия дискретной случайной величины. Основные понятия и определения.
Дисперсией дискретной случайной величины называют
математическое ожидание квадрата
отклонения случайной величиной от
ее математического ожидания:
.
Дисперсия имеет
размерность, равную квадрату
размерности случайной величины .
Теорема. Дисперсия равна
разности между математическим ожиданием
квадрата случайной величины
и
квадратом ее математического ожидания:
.
Свойства дисперсии
1. Дисперсия постоянной величины равно
нулю:
.
2. Постоянный
множитель можно выносить за знак дисперсии ,
возводя его в квадрат:
.
3. Дисперсия суммы
двух независимых случайных величин равно
сумме дисперсий этих случайных величин :
.
Следствие. Дисперсия суммы
нескольких взаимно
независимых случайных величин равно
сумме дисперсий этих величин .
4. Дисперсия разности
двух независимых случайных величин равно
сумме дисперсий этих случайных величин :
.
23. Корреляционный момент. Лемма.
Корреляционным моментом xy случайных величин Х и Y называется математическое ожидание произведения отклонений этих величин.
Практически используются формулы:
Для дискретных случайных
величин:
Для непрерывных случайных
величин:
Корреляционный момент служит для того, чтобы охарактеризовать связь между случайными величинами. Если случайные величины независимы, то их корреляционный момент равен нулю.
Корреляционный момент имеет размерность, равную произведению размерностей случайных величин Х и Y. Этот факт является недостатком этой числовой характеристики, т.к. при различных единицах измерения получаются различные корреляционные моменты , что затрудняет сравнение корреляционных моментов различных случайных величин.
Для того, чтобы устранить этот недостаток применятся другая характеристика – коэффициент корреляции.
Определение. Коэффициентом корреляции rxy случайных величин Х и Y называется отношение корреляционного момента к произведению средних квадратических отклонений этих величин.
Коэффициент корреляции является безразмерной величиной. Для независимых случайных величин коэффициент корреляции равен нулю.
Свойство: Абсолютная величина корреляционного момента двух случайных величин Х и Y не превышает среднего геометрического их дисперсий.
Свойство: Абсолютная величина коэффициента корреляции не превышает единицы.
Случайные величины называются коррелированными, если их корреляционный момент отличен от нуля, и некоррелированными, если их корреляционный момент равен нулю.
Если случайные величины независимы, то они и некоррелированы, но из некоррелированности нельзя сделать вывод о их независимости.
Если две величины зависимы, то они могут быть как коррелированными, так и некоррелированными.
Часто по заданной плотности распределения системы случайных величин можно определить зависимость или независимость этих величин.
Наряду с коэффициентом корреляции степень зависимости случайных величин можно охарактеризовать и другой величиной, которая называется коэффициентом ковариации. Коэффициент ковариации определяется формулой: