
- •Условная вероятность
- •Формула полной вероятности
- •Формула Байеса
- •15 Вероятность отклонения относительной частоты от постоянной вероятности в независимых испытаниях.
- •Действия над дискретными случайными величинами.
- •22. Дисперсия дискретной случайной величины. Основные понятия и определения.
- •23. Корреляционный момент. Лемма.
- •24. Основные свойства дисперсии.
- •25. Начальные и центральные моменты дискретной случайной величины.
- •26. Непрерывные случайные величины. Функция распределения.
- •27. Свойства функции распределения.
- •28. Плотности распределения вероятностей.
- •29. Непрерывная случайная величина, распределённая по нормальному закону. Правило трёх сигм.
- •30. Непрерывная случайная величина, равномерно распределённая в интервале (a,b).
- •31. Числовые характеристики непрерывной случайной величины.
- •32. Коэффициент корреляции. Коррелированность и зависимость случайных величин.
- •33. Задачи математической статистики.
- •34. Генеральная и выборочная совокупности.
- •35. Повторная и бесповторная выборки. Репрезентативная выборка.
- •36. Способы отбора.
- •37. Статическое распределение выборки.
- •38. Полигон и гистограммы.
- •39. Выборочное среднее.
- •Свойства выборочного среднего
- •40. Выборочная дисперсия и выборочное среднее квадратическое отклонение.
- •41. Коэффициент вариации, доверительные интервалы. Надёжность. Их зависимость.
- •42. Уравнение регрессии.
42. Уравнение регрессии.
Уравнение регрессии показывает, как в среднем изменяется у при изменении любого из xi. Если независимая переменная одна - это простой регрессионный анализ. Если же их несколько, то такой анализ называется многофакторным.
Строго
регрессионную зависимость можно
определить следующим образом. Пусть
,
—
случайные величины с заданным совместным
распределением вероятностей. Если для
каждого набора значений
определено условное
математическое ожидание
(уравнение
линейной регрессии в общем виде),
то
функция
называется регрессией величины
Y по величинам
,
а её график — линией
регрессии
по
,
или уравнением
регрессии.
Зависимость от проявляется в изменении средних значений Y при изменении . Хотя при каждом фиксированном наборе значений величина остаётся случайной величиной с определённым рассеянием.
Для выяснения вопроса, насколько точно регрессионный анализ оценивает изменение Y при изменении , используется средняя величина дисперсии Y при разных наборах значений (фактически речь идет о мере рассеяния зависимой переменной вокруг линии регрессии).