
- •1 Основные определения динамики. Основные законы динамики(закон инерции, основной закон динамики, третьи закон ньютона, закон независимости действия сил)
- •2 Динамика точки. Дифференциальные уравнения движения материальной точки. Две основные задачи динамики.
- •3 Колебания материальной точки. Свободные колебания материальной точки на пружине. Свободные колебания математического маятника.
- •4 Колебания материальной точки при наличии вязкого трения. Вынужденные колебания.
- •5 Динамика относительного движения материальной точки. Основное уравнение динамики относительного движения. Принцип, относительности классической механики. Условие относительного покоя
- •3.2. Принцип относительности классической механики
- •3.3. Условия относительного покоя. Сила тяжести
- •6 Динамика механической системы. Центр масс механической системы. Главный вектор и главный момент внутренних сил. Дифференциальные уравнения движения механической системы.
- •7 Моменты инерции твердого тела. Момент инерции относительно полюса. Момент инерции относительно оси. Момент инерции тела относительно плоскости. Момент инерции
- •8 Теорема о моментах инерции относительно параллельных осей (теорема Штейнера). Осевые моменты инерции некоторых однородных простейших симметричных тел.
- •9 Теорема о движении центра масс механической системы. Следствия из теоремы.
- •10 Количество движения. Импульс силы. Теорема об изменении количества движения. Следствия из теоремы.
- •Теорема об изменении количества движения
- •11 Уравнение Мещерского, (основное уравнение динамики тела переменной массы). Первая формула Циолковского.
- •6.2. Теорема об изменении кинетического момента
- •13 Теорема о зависимости кинетических моментов в относительном движении. Предложения в тексте с термином "Отношение"
- •14 Теорема об изменении кинетического момента механической системы. Следствия из теоремы.
- •15 Теорема об изменении кинетического момента механической системы в её относительном Движении по отношению к центру масс.
- •16 Дифференциальные уравнения поступательного движения. Дифференциальные уравнения во вращательном движении. Дифференциальные уравнения плоского (плоскопараллельного) движения твердого тела.
- •17 Работа силы Примеры вычисления работы. Мощность. Кинетическая; энергия.
- •18 Кинетическая энергия твердого тела в различных случаях его движения. Теорема об изменении кинетической энергии материальной точки. Теорема об изменении кинетической энергии механической системы.
- •Свойства потенциального поля.
- •Потенциальная энергия материальной точки.
- •Закон сохранения полной механической энергии.
- •20 Принцип Даламбера для материальной точки. Принцип Даламбера для механической системы. Приведение Сил инерции к простейшему виду.
- •21 Определение реакций опор вращающегося тела.
- •22 Основы аналитической механики .Связи и их уравнения. Классификация связей. Возможные перемещения. Число степеней свободы. Уравнения возможных мощностей и работ.
- •23 Понятия об обобщённых координатах и степенях подвижности механических систем. Понятие обобщенной силы.
- •24 Уравнения Лагранжа 2-го рода.
- •25 Уравнения возможных работ и мощностей в обобщённых силах. Условие равновесия механической системы в обобщенных координатах.
- •34.3.2. Понятие об обобщённых силах.
- •26 Уравнения Лагранжа 2-го рода для консервативных систем.
7 Моменты инерции твердого тела. Момент инерции относительно полюса. Момент инерции относительно оси. Момент инерции тела относительно плоскости. Момент инерции
мОМЕНТОМ ИНЕРЦИИ I тела относительно точки, оси или плоскости называется сумма произведений массы точек тела mi, на квадраты их расстояний ri до точки, оси или плоскости:
Моментом инерции твёрдого тела относительно плоскости называется скалярная величина, равная сумме произведений массы каждой точки тела на квадрат расстояний от этой точки до плоскости.
Момент инерции тела относительно оси является мерой инерции тела во вращательном движении вокруг этой оси.
Момент инерции тела может быть также выражен через массу М тела и его радиус инерции r:
Моментом инерции тела (системы) относительно данной оси Oz (или осевым моментом инерции) называется скалярная величина, равная сумме произведений масс всех точек тела (системы) на квадраты их расстояний от этой оси
Центробежный момент инерции
произведение инерции, одна из величин, характеризующих распределение масс в теле (механической системе). Ц. м. и. вычисляются как суммы произведений масс mк точек тела (системы) на две из координат xk, ук, zk этих точек:
8 Теорема о моментах инерции относительно параллельных осей (теорема Штейнера). Осевые моменты инерции некоторых однородных простейших симметричных тел.
Теорема Штейнера: момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела JC относительно параллельной ей оси, проходящей через центр масс тела, и произведения массы тела m на квадрат расстояния d между осями:
где:
JC — известный момент инерции относительно оси, проходящей через центр масс тела;
J — искомый момент инерции относительно параллельной оси;
m — масса тела;
d — расстояние между указанными осями.
9 Теорема о движении центра масс механической системы. Следствия из теоремы.
Следствие
1. Если главный
вектор внешних сил, приложенных к
механической системе, равен нулю, то
центр масс системы находится в покое
или движется равномерно и прямолинейно. Так
как ускорение центра масс равно нулю,
.
Следствие 2. Если проекция главного вектора внешних сил на какую-нибудь ось равна нулю, то центр масс системы или не изменяет своего положения относительно данной оси, или движется относительно нее равномерно.
получим окончательно:
(4)
Уравнение и выражает теорему о движении центра масс системы: произведение массы системы на ускорение ее центра масс равно геометрической сумме всех действующих на систему внешних сил.Сравнивая с уравнением движения материальной точки, получаем другое выражение теоремы: центр масс системы движется как материальная точка, масса которой равна массе всей системы и к которой приложены все внешние силы, действующие на систему.
Проектируя обе части равенства на координатные оси, получим:
Эти уравнения представляют собою дифференциальные уравнения движения центра масс в проекциях на оси декартовой системы координат.
Значение доказанной теоремы состоит в следующем.
1) Теорема дает обоснование методам динамики точки. Из уравнений видно, что решения, которые мы получаем, рассматривая данное тело как материальную точку, определяют закон движения центра масс этого тела, т.е. имеют вполне конкретный смысл.