Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Числовые ряды.DOC
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.63 Mб
Скачать

В математике рядом называют бесконечную сумму, т.е. сумму, множество слагаемых которой бесконечно. Эта формулировка не является корректным определением понятия, но все же она создает достаточно верное общее представление о нем. Если каждое слагаемое такой суммы есть число, вещественное или комплексное, ее называют числовым рядом; если же слагаемые представляют собой функции, то ее называют функциональным рядом.

§ 1. Числовые ряды.

1º. Основные понятия.

Пусть {z k} - некоторая последовательность чисел, вообще говоря, комп- лексных . Рассмотрим последовательность {S n}, где S 1 = z 1 , а при любом натуральном n > 1 S n = z 1 + z 2 + … + z n . Последовательность {S n} мо -жет оказаться либо сходящейся, либо расходящейся.

Пусть последовательность {S n} сходится, а S есть ее предел: lim S n = S . Будем говорить в этом случае, что числовой ряд

z 1 + z 2 + … + z k + … ( 1 )

сходится, а число S назовем суммой этого ряда. Члены последовательности {z k} назовем членами ряда (1) ; S n назовем его n – ой частичной суммой .

Замечание. Хотя число S и называют суммой, на самом деле оно не явля- ется суммой в привычном понимании этого термина, согласно которому сумма - это результат сложения некоторого конечного количества слагаемых. Суммой является. например, всякий член последовательности {S n}, начиная с S 2 . Но сложить бесконечное множество членов ряда невозможно, и число S представляет собой результат другого математического действия – преде- льного перехода, примененного к последовательности сумм {S n}.

Для обозначения ряда (1) мы обычно будем пользоваться символом , а также упрощенным символом . В этих символах z k называют общим членом ряда. Если ряд сходится, а S является его суммой, т.е. если lim Sn = S, будем записывать: = S.

В случае, когда последовательность {S n} расходится, будем говорить, что ряд (1) расходится; суммы такой ряд не имеет. Однако, если S n → + ∞ или S n → - ∞ , принято говорить. что сумма расходящегося ряда (1) равна + ∞ или - ∞ соответственно.

Пример 1. Пусть q – некоторое комплексное число; положим при вском натуральном k z k = q и рассмотрим ряд = 1 + q + q +…+ q + ... ( его члены образуют геометрическую прогрессию). Имеем: S n = 1 + q + q + … + q = . Если |q| < 1, то → 0 и, значит, S n ; если же |q | > 1, то q → ∞ и , следовательно, S n . Итак, при |q| < 1 рассматриваемый

ряд сходится, его сумма равна ; при |q | > 1 ряд расходится.

Пример 2. Рассмотрим ряд . Здесь z k = , Sn = = = ln2 + ( ln3 – ln2) + (ln4 – ln3) + … + ( ln n – ln(n-1)) + + ( ln(n+1) – ln n ) = ln (n+1). Очевидно, S n→ +∞ . Значит, ряд расходится, его сумма равна + ∞.

Пример 3. Пусть z k =(-1) , S n = 1 – 1 + … …+ (-1) . При четных n эта сумма равна нулю, а при нечетных – единице ; значит, последовательность {S n} частичных сумм ряда не имеет предела, ни конечного, ни бесконечного. Ряд расходится.

2˚. Общие свойства числовых рядов

1. ( Критерий сходимости Коши) Для того, чтобы числовой ряд сходился, необходимо и достаточно, чтобы для всякого положительного ε можно было указать натуральное n ε такое,что при всех натуральных n > n ε и любых натуральных р справедливо неравенство .

► Сходимость числового ряда означает сходимость последовательности {S n} его частичных сумм. Напомним формулировку критерия Коши сходимости последовательности : для того, чтобы последовательность {S n} сходилась, необходимо и достаточно, чтобы

.

Не ограничивая общности можно считать, что m > n , т.е. что m = n + p , где р - некоторое натуральное число. Если n > n ε, то подавно n + p > n ε , поэтому написанную выше строчку можно заменить следующей, ей равно- сильной :

.

Заметим : ; Таким образом, из критерия Коши для последовательности {S n} вытекает: ряд сходится тогда и только тогда, когда

,

что и требовалось доказать. ◄

Приведем пример применения критерия Коши.

Пример 4, Ряд называют гармоническим рядом. Покажем, что это расходящийся ряд. Пусть n - некоторое натуральное число; а p = n +2 . Рассмотрим В этой сумме n +2 слагаемых, причем - наименьшее из них ; поэтому Здесь n - любое натуральное число. Зададим ε, удовлетворяющее неравенствам 0 < ε < ½ . Тогда при всяком натуральном n и p = n +2 будет выполнено , а это означает, что для такого ε нельзя указать n ε , которое удовлетвори- ло бы требованию критерия сходимости Коши . Значит, ряд расходится. ◄

2. ( Необходимое условие сходимости ) Если ряд .сходится, то его общий член стремится к нулю : z k → 0 .

► Пусть S n = . Обозначим сумму ряда через S : S n → S. При всяком n ≥2 , очевидно, z n = S n - S n -1 . Перейдем в этом равенстве к пределу ; так как последовательности имеют один и тот же предел S , получим : z n → 0. ◄

Замечание. Обратное утверждение (если z k → 0 , то сходится ) неверно. Действительно, для гармонического ряда имеем z k → 0 , однако ряд расходится. Можно указать еще и на ряд , рассмотренный выше (см. пример 2 ): его общий член,очевидно, стремится к нулю, но ряд расходится.

3. ( Достаточное условие расходимости ) Если общий член ряда не стремится к нулю, то ряд расходится.

► Действительно, если общий член ряда не стремится к нулю, ряд не может оказаться сходящимся, так как общий член сходящегося ряда обязательно стремится к нулю. ◄

Пример 5. Выше ( см. пример 1) мы показали, что ряд сходится, если |q| < 1 и расходится, если |q| > 1. Рассмотрим случай |q| = 1. Имеем : при всяком натуральном k, поэтому последовательность заведомо не стремится к нулю; значит. при любом комплексном q, |q| = 1, рассматриваемый ряд расходится.

4. ( Умножение числа на ряд) Пусть заданы ряд и некоторое отличное от нуля число λ , вообще говоря , комплексное. Произведением числа λ на ряд называют ряд , где wk = λzk . Справаедливы утверждения: 1) ряды и либо оба сходятся, либо оба расходятся ; 2) если = S, то = λ S.

► Пусть n - некоторое натуральное число. Обозначим : . Очевидно, .Отсюда и из теоремы об арифметических действиях со сходящимися последовательностями ( [3], п. 3.5) вытекает : 1) последовательности частичных сумм либо обе сходятся, либо обе расходятся ; 2 ) если

5. ( Сложение рядав ) Ряд называют суммой рядов и . Справедливы утверждения: 1) пусть ряды сходятся, причем ; тогда сходится и , причем = ; 2) если один из рядов сходится, а другой расходится, то ряд расходится.

► Обозначим : Очевидно, . Из теоремы об арифметических действиях со сходящимися последовательностями следует : 1) если последовательности частичных сумм сходятся, то сходится и их сумма - последовательность , причем Sn → →S’+S”; 2) если одна из последовательностей сходится , а другая расходится, то не может быть сходящейся последовательностью, значит, ряд расходится. ◄

Замечание. Если оба ряда расходятся, то их сумма, т.е. ряд может оказаться как сходящимся, так и расходящимся рядом. На- пример, положим Тогда ряды расходятся ( см. пример 4) , а ряд сходится, так как каждый его член равен нулю.

6. Пусть задан ряд , а m - некоторое натуральное число . Ряд , где wl = = zm+l , т.е. ряд zm+1+zm+2+ …+ zm+l + … = , называют остатком ряда . Справедливо утверждение: ряд и его остаток либо оба сходятся, либо оба расходятся.

► Очевидно, при любом натуральном p т.е. где А = = . Ввиду такой связи между последовательностями частичных сумм очевидно, что если сходится одна из них, то сходится и другая; если одна из них расходится, то другая не может быть сходящейся. ◄

7. Пусть и - последовательности вещественных чисел . Обозначим : zk = xk + i yk , Sn= . Если ряды , сходятся, то их суммы обозначаем через S , и соответственно. Справедливы утверждения: 1) ряд сходится тогда и только тогда, когда сходятся оба ряда ; 2) если сходится, то S = + i .

► Заметим : Sn = S + i S . Утверждения 1) и 2) вытекают непосредственно из свойств последовательностей комплексных чисел. ◄