Добавил:
Upload
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз:
Предмет:
Файл:Лекции 2 семестр.docx
X
- •Модуль 4. Функции нескольких переменных
- •Тема 4.1. Функции нескольких переменных.
- •4.1.1. Область определенияфункции нескольких переменных.
- •П римеры.
- •4.1.2. Предел функции нескольких переменных.
- •4.1.3. Непрерывность функции 2-х переменных.
- •Пример.
- •Тема 4.2.Частные производные и полный дифференциал.
- •Частные производные.
- •Пример 1
- •Пример 2
- •Типовой пример.
- •Дифференцирование сложных и неявных функций.
- •Типовые примеры. Пример 1.
- •Полный дифференциал.
- •Тема 4.3 Производная по направлению.
- •4.3.1 Производная по направлению.
- •Замечание
- •2) Линии и поверхности уровня.
- •4.3.2 Градиент.
- •4.3.3 Экстремум функции 2-х переменных.
- •Тема 4.4 Двойной интеграл
- •4.4.1 Двойной интеграл в декартовой системе координат (дск)
- •4.4.2. Двукратный интеграл.
- •4.4.3 Двойной интеграл в полярной системе координат (пск)
- •Тема 4.5 Тройной интеграл
- •4.5.1 Тройной интеграл в дск.
- •4.5.2.Тройной интеграл в цск и сск.
- •4.5.3 Криволинейный интеграл.
- •Тема 4.6Приложение кратных интегралов.
- •4.6.1 Приложение двойных интегралов.
- •4.6.2 Приложение тройных интегралов.
- •4.6.3 Приложение криволинейных интегралов.
- •Модуль 5. Дифференциальные уравнения.
- •Тема 5.1. Обыкновенные дифференциальные уравнения
- •5.1.1. Дифференциальные уравнения с разделяющимися переменными и однородные дифференциальные уравнения
- •5.1.2. Линейные дифференциальные уравнения (лду)
- •1) Понятие лду 1-го порядка. Определение 5.1.13.
- •2) Решение лду 1-го порядка.
- •5.1.3. Уравнения в полных дифференциалах.
- •Определение 5.1.15.
- •2) Решение уравнения в полных дифференциалах.
- •Тема 5.2. Линейные дифференциальные уравнения
- •5.2.1. Однородные линейные дифференциальные уравнения (лду)
- •5.2.2. Неоднородные линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Общее решение.
- •5.2.3. Решение линейного дифференциального уравнения 2-го порядка с постоянными коэффициентами методом вариации произвольных постоянных и методом решения в зависимости от вида правой части.
- •Тема 5.3. Системы обыкновенных дифференциальных уравнений1-го порядка
- •5.3.1. Основные понятия.
- •5.3.2. Метод характеристического уравнения.
- •5.6.3. Метод исключения.
- •Модуль 6. Ряды.
- •Тема 6.1. Числовые ряды.
- •6.1.1Необходимый признак сходимости ряда.
- •Найти сумму n первых членов ряда ( Sn ), и сумму ряда (s).
- •6.1.2. Достаточные признаки сходимости.
- •6.1.3. Знакочередующиеся и знакопеременные ряды.
- •Тема 6.2. Функциональные ряды.
- •6.2.1.Основные понятия.
- •6.2.2. Действия с функциональными рядами.
- •6.2.3.Степенные ряды.
- •Тема 6.3. Ряды Тейлора и Маклорена.
- •6.3.1. Ряд Тейлора.
- •6.3.2. Ряд Маклорена.
- •6.3.3. Биномиальный и логарифмический ряды.
6.3.3. Биномиальный и логарифмический ряды.
Биномиальный ряд.
Определение 6.3.3.
Ряд вида
(6.3.5) называется биномиальным рядом. Он
сходится к биному
при
.
Вывод формулы (6.3.5).
Пусть
(6.3.6.)
(6.3.7.)
(6.3.8.)
(6.3.9.)
хп+… (6.3.10.)
2) Логарифмический ряд
Определение 6.3.4.
Ряд вида
(6.3.11) называется логарифмическим рядом.
Кроме того, справедлива формула
(6.3.12). Первая
формула предпочтительна для
,
вторая – для х
1.
Типовые примеры.
Пример 1.
Вычислить ln 1,04с точностью до 0,0001.
Решение.
Пример 2.
Вычислить ln2с точностью до 0,0001.
Решение.
Соседние файлы в предмете Высшая математика
