
- •Предисловие авторов
- •Теоретические основы электротехники
- •1.1. Предмет, основные разделы и понятия теоретических основ электротехники
- •1.2. Электрические цепи: элементы, схемы, законы, классификация
- •1.3. Электромагнитные процессы и режимы электрических цепей. Режим синусоидальных токов
- •1.4. Мощности в цепях синусоидального тока
- •1.5. Трехфазные цепи: фазные и линейные токи, напряжения, мощности
- •1.6. Электрические цепи несинусоидальных токов
- •1.7. Высшие гармоники в трехфазных цепях
- •1.8. Мощности в цепях несинусоидальных токов
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Краткая история электроэнергетики. Электроэнергетические системы
- •2.1. Введение
- •А) различием в моментах появления пика нагрузки обеих энергосистем; это различие может сильно изменяться в различные периоды года;
- •Б) различием в моментах появления недельного, месячного или годового максимума.
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Режимы работы ээс и управление ими
- •Для сетей 35 кВ — при трехфазном коротком замыкании;
- •Для сетей 110—1150 кВ — при двухфазном коротком замыкании на землю.
- •3.4. Средства управления режимами и их функции
- •3.5. Регулирование напряжения в электрических сетях
- •3.6. Регулирование частоты и мощности в энергосистемах
- •Первичное регулирование частоты, обеспечивающее стабильность частоты, т.Е. Удержание отклонений частоты в допустимых рамках при нарушении общего баланса мощности в любой части энергосистемы;
- •Вторичное регулирование, обеспечивающее восстановление нормального уровня частоты и плановых режимов обмена мощностью между частями энергосистемы или регионами;
- •Централизованное регулирование частоты в сочетании с региональным регулированием мощности электростанций;
- •Децентрализованное комплексное регулирование частоты и перетоков мощности.
- •Управляющие вычислительные центры (увц) в цду еэс, оду оэс, цдс ээс, диспетчерские пункты (дп) предприятий электрических сетей (пэс);
- •Автоматизированные системы управления технологическими процессами (асутп) электростанций, энергоблоков электростанций и подстанций;
- •Централизованные и локальные системы автоматического регулирования и управления.
- •3.11. Структура системы противоаварийной автоматики
- •Литература для самостоятельного изучения
- •Электрические схемы электростанций и подстанций
- •4.1. Общие сведения
- •4.2. Основные требования, предъявляемые к схемам распределительных устройств электроустановок
- •4.5. Схемы, применяемые на высшем и среднем напряжениях
- •4.7. Структурные схемы электрических станций и подстанций
- •4.8. Электроснабжение собственных нужд электростанций и подстанций
- •4.9. Примеры исполнения электрических схем электростанций и подстанций
- •Контрольные вопросы.
- •Литература для самостоятельного изучения.
- •Глава пятая системы электроснабжения
- •5.1. Общая характеристика систем электроснабжения
- •5.2. Основные группы потребителей электроэнергии
- •5.3. Основные условия и задачи формирования систем электроснабжения
- •5.4. Номинальные напряжения электроустановок
- •5.5. Основные типы схем электрических сетей
- •5.6. Режим нейтрали электрических сетей
- •12.7. Конструкции линий, подстанций и их основного электрооборудования
- •5.8. Основные вопросы проектирования и расчетов сэс
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Качество электроэнергии в системах электроснабжения
- •6.1. Качество электрической энергии
- •6.2. Показатели качества электроэнергии
- •6.3. Влияние качества электроэнергии на функционирование технических средств
- •6.4. Технические средства контроля качества электроэнергии
- •6.5. Обеспечение качества электроэнергии
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Электрические машины электростанций
- •7.1. Конструкции синхронных генераторов
- •7.2. Принцип действия синхронных генераторов
- •7.3. Типы турбо- и гидрогенераторов по мощностям и способам охлаждения
- •7.3.1. Турбогенераторы
- •7.3.2. Гидрогенераторы
- •7.4. Системы возбуждения генераторов
- •7.5. Совершенствование изоляции обмоток синхронных генераторов
- •3.6. Характеристики генераторов, работающих на автономную сеть
- •3.7. Включение генераторов на параллельную работу с сетью постоянного напряжения и постоянной частоты
- •7.8. Угловая характеристика. Статическая устойчивость работы генераторов при работе параллельно с сетью бесконечной мощности. V-образные характеристики генераторов
- •7.9. Синхронные двигатели
- •7.10. Синхронные компенсаторы
- •7.11. Синхронные машины продольно-поперечного возбуждения. Асинхронизированные синхронные машины
- •7.12. Асинхронные двигатели
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Трансформаторное оборудование
- •8.1. Общие вопросы
- •4.2. Принцип работы и устройство трансформатора
- •8.3. Автотрансформаторы
- •8.4. Конструкция трансформатора
- •4.5. Изоляция в трансформаторах
- •4.6. Потери и коэффициент полезного действия трансформатора
- •4.7. Структура условного обозначения типа трансформатора
- •А) масляные трансформаторы:
- •Б) трансформаторы с жидким негорючим диэлектриком:
- •В) сухие трансформаторы:
- •8.8. Измерительные трансформаторы
- •4.9. Современное состояние, тенденции развития трансформаторостроения
- •8.10. Реакторы
- •Контрольные вопросы:
- •Литература для самостоятельного изучения
- •Коммутационные и защитные аппараты высокого напряжения. Силовые конденсаторы
- •9.2. Условия работы аппаратов высокого напряжения и общие требования, предъявляемые к ним
- •9.3. Выключатели высокого напряжения
- •9.3.1. Воздушные выключатели
- •9.3.2. Элегазовые выключатели
- •9.3.3. Масляные выключатели
- •Баковые (многообъемные) масляные выключатели, в которых масло используется для гашения и изоляции токоведущих частей от заземленного бака;
- •Маломасляные (малообъемные) масляные выключатели, в которых масло используется только для гашения дуги и изоляции между разомкнутыми контактами одного полюса.
- •Интенсивное дутье газопаровой смеси в зоне дуги, особенно в момент тока, близкого к нулю;
- •Максимально возможное высокое давление газопаровой смеси в области дуги в конце полупериода тока.
- •9.3.4. Электромагнитные выключатели
- •9.3.5. Вакуумные выключатели
- •9.4. Разъединители, отделители, короткозамыкатели
- •9.5. Комплектные распределительные устройства
- •9.5.1. Комплектные ру 10-35 кВ
- •9.5.2. Герметизированные комплектные ру на основе элегаза (круэ)
- •9.6. Защитные и токоограничивающие аппараты
- •9.7. Силовые конденсаторы
- •9.7.1. Основные характеристики силовых конденсаторов
- •9.7.2. Электротехнические материалы, применяемые в силовых конденсаторах
- •9.7.3. Конструкции и области применения силовых конденсаторов
- •9.8. Перспективы развития коммутационных аппаратов в мире
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Технические средства передачи электроэнергии
- •10.1.Основные понятия и определения
- •Линии открытого типа (воздушные);
- •Линии закрытого типа (кабельные).
- •10.2.Общая характеристика воздушной линии и условий ее работы
- •10.3.Провода и грозозащитные тросы
- •10.4. Классификация опор
- •Одноцепные, которые применяются при сооружении вл любых номинальных напряжений;
- •Двухцепные, которые в России применяются для вл 35—330 кВ, а за рубежом и на линиях 380—500 кВ;
- •10.5. Изоляторы и линейная арматура
- •Стеклянной или фарфоровой изолирующей детали в виде тела вращения с ребрами на нижней поверхности и с внутренней полостью конической или цилиндрической формы;
- •Шапки из ковкого чугуна, в верхней части которой имеется сферическая полость (гнездо), предназначенная для шарнирного сопряжения с другим изолятором;
- •Стержня, нижняя головка которого имеет сферическую поверхность, сопрягаемую с соответствующей поверхностью в гнезде шапки.
- •10.6. Геометрические характеристики
- •Ее токоведущих элементов (проводов) и заземленных частей (траверс и стоек опоры);
- •Проводов и грозозащитных тросов, если последние предусмотрены конструкцией;
- •Проводов в нижней точке их провисания в пролете относительно поверхности земли.
- •10.7. Общая характеристика кабельных линий
- •10.8. Кабельные линии низкого и среднего напряжений
- •10.9. Кабельные линии высокого напряжения
- •10.10. Основные сведения о сооружении кабельных линий
- •10.11. Электрические характеристики линий электропередачи переменного тока
- •10.11.1. Одноцепная транспонированная воздушная линия с нерасщепленной фазой
- •Погонное индуктивное сопротивление
- •Погонная емкостная проводимость
- •Погонная активная проводимость
- •Волновые параметры и натуральная мощность
- •10.11.2. Одноцепная транспонированная воздушная линия с расщепленной фазой
- •Погонное активное сопротивление
- •Погонные активные сопротивления и диаметры сталеалюминиевых проводов облегченного исполнения (по гост 839-80)
- •Волновые параметры и натуральная мощность
- •10.11.3. Двухцепная транспонированная воздушная линия
- •10.11.4. Кабельные линии
- •Погонное активное сопротивление
- •Погонные реактивные параметры
- •Погонная активная проводимость
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Электропередачи и вставки постоянного тока. Управляемые (гибкие) линии переменного тока
- •11.1. Возможные области применения электропередач и вставок постоянного тока
- •11.3. Схемы электропередач и вставок постоянного тока
- •Средним значением тока, протекающим через него за период частоты сети Iср;
- •Максимальным значением напряжения, которое прикладывается к нему как в прямом, так и обратном направлении, когда вентиль закрыт, и которое этот вентиль должен выдержать Uобр max.
- •1) Создает необходимое выпрямительное напряжение Udм, что обеспечивается выбором соответствующего коэффициента трансформации;
- •2) Электрически отделяет цепь выпрямленного тока от сети переменного тока.
- •Регулятор угла α на выпрямителе, исключающий длительную работу последнего при повышенных значениях этого угла, что ведет к увеличению потребления реактивной мощности из сети;
- •Регулятор баланса токов полуцепей, предназначенный для снижения до минимума тока в земле.
- •11.4. Энергетические характеристики преобразователей
- •11.6. Технико-экономические показатели электропередач постоянного тока
- •11.7. Управляемые (гибкие) линии переменного тока
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Силовая электроника
- •12.1. Введение
- •6.2. Силовые электронные ключи
- •На стороне переменного тока;
- •На стороне постоянного тока;
- •Непосредственным управлением ключевыми элементами схемы.
- •Преобразователи с промежуточным звеном постоянного тока (непрямые преобразователи);
- •Преобразователи с непосредственной связью питающей сети и цепей нагрузки, которые в литературе иногда называются преобразователями с неявно выраженным звеном постоянного тока.
- •Преобразователи с прямой передачей энергии в нагрузку;
- •Преобразователи с накоплением энергии в промежуточных элементах схемы с последующей передачей в нагрузку. Функции таких накопителей обычно выполняют индуктивные накопители (реакторы).
- •12.4. Применение силовой электроники в электроэнергетике
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Релейная защита
- •13.1. Назначение релейной зашиты. Требования, предъявляемые к релейной защите
- •13.2. Структурная схема рз, подключение рз к защищаемому объекту
- •13.3. Токовые защиты
- •15.4. Дистанционная защита
- •15.5. Продольная дифференциальная токовая защита
- •15.6. Поперечная дифференциальная токовая защита
- •15.7. Направленная защита с высокочастотной блокировкой
- •15.8. Дифференциально-фазная защита
- •15.9. Комплексы релейной защиты
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Электротехнические материалы
- •14.1. Общие положения
- •14.2. Проводниковые материалы
- •14.3. Электроизоляционные материалы
- •14.4. Магнитные материалы
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Техника высоких напряжений (твн)
- •15.1. Предмет техники высоких напряжений (твн)
- •15.2. Механизм нарушения электрической изоляции
- •15.3. Характеристика отдельных видов изоляции
- •15.3.1. Воздушная изоляция
- •15.3.2. Назначение и типы изоляторов
- •15.3.3. Внутренняя изоляция
- •15.4. Электрические воздействия на электрическую изоляцию
- •15.4.1. Грозовые перенапряжения и их ограничение
- •15.4.2, Коммутационные перенапряжения и их ограничение
- •15.5. Испытания изоляции электрооборудования
- •15.5.1. Испытания оборудования в процессе изготовления
- •15.5.2. Профилактические испытания изоляции в эксплуатации
- •15.5.3. Испытательное оборудование
- •15.6. Перспективные направления развития техники высоких напряжений
- •15.6.1. Особенности проектирования изоляции оборудования постоянного тока
- •15.6.2. Особенности проектирования изоляции оборудования ультравысокого напряжения
- •Контрольные вопросы
- •Литература для самостоятельного изучения:
- •Сверхпроводимость
- •16.1. Общие сведения
- •16.2. Основные виды сверхпроводникового (сп) оборудования Введение
- •16.2.1. Кабельные линии электропередачи
- •16.2.2. Трансформаторы
- •16.2.3. Ограничители токов кз
- •16.2.4. Индуктивные и кинетические накопители энергии
- •16.2.5. Электрические машины
- •16.3. Ситуация с освоением сп-техники в электроэнергетике России
- •Контрольные вопросы
- •Литература
- •Гидроэнергетика и другие возобновляемые источники энергии
- •17.1. Гидроэнергетические ресурсы
- •Напоров — гидравлические в водоводах, бьефах, на неиспользуемых участках водотоков;
- •Расходов — испарение из водохранилищ, фильтрацию, холостые сбросы и т.П.;
- •Энергии в оборудовании.
- •17.4. Регулирование стока реки водохранилищем
- •17.5. Гидроэлектростанции и их энергетическое оборудование
- •Гаэс — в режимах генератора, электродвигателя, синхронного компенсатора и вращающегося резерва.
- •17.6. Мощность гэс и выработка энергии
- •17.7. Гидротехнические сооружения гэс
- •17.8. Гидроаккумулирующие электростанции
- •17.9. Солнечная энергетика
- •По виду преобразования солнечной энергии в другие виды энергии — тепло или электричество;
- •По концентрированию энергии — с концентраторами и без концентраторов;
- •По технической сложности — простые (нагрев воды, сушилки, нагревательные печи, опреснители и т.П.) и сложные.
- •17.10. Ветроэнергетика
- •По мощности — малые (до 10 кВт), средние (от 10 до 100 кВт), крупные (от 100 до 1000 кВт), сверхкрупные (более 1000 кВт);
- •По числу лопастей рабочего колеса — одно-, двух-, трех- и многолопастные;
- •По отношению рабочего колеса к направлению воздушного потока — с горизонтальной осью вращения, параллельной (рис. 17.16) или перпендикулярной вектору скорости (ротор Дарье) (рис. 17.17).
- •17.11. Геотермальная энергетика
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Приложение 1
- •Приложение 2
- •Словарь основных терминов
10.8. Кабельные линии низкого и среднего напряжений
Кабели с пропитанной бумажной изоляцией
Кабели с бумажной изоляцией, имеющей вязкую пропитку, выпускаются в нашей стране на напряжения 1, 3, 6, 10, 20 и 35 кВ. Токопроводящие жилы таких кабелей изолируются кабельной бумагой марок К-080, К-120 и К-170 (с толщиной 0,08; 0,12 и 0,17 мм соответственно), которая пропитывается обычно маслоканифольным составом. Пропитка повышает электрическую прочность изоляции с 3—5 до 40—80 МВ/м. От пропиточного состава требуются высокая вязкость при температурах эксплуатации 50—80 °С и малый коэффициент температурного расширения. Этим требованиям удовлетворяют маслоканифольные составы. Обычно применяемый состав МП-3 содержит 5—10 % канифоли, 1—5 % полиэтиленового воска и нефтяное пропиточное масло марки КМ-25 [10.19].
Несмотря на достаточно высокую вязкость такого пропиточного состава, при прокладке кабеля по трассе с разностью уровней более 15—20 м существует опасность перемещения пропиточного состава в направлении нижней точки трассы, что влечет за собой частичное осушение (а следовательно, и снижение электрической прочности) изоляции в верхней части, а также увеличение гидростатического давления в нижней части трассы, нежелательного по условиям ограниченной механической прочности оболочки. При большей разности уровней по трассе выходом является секционирование линии на отдельные участки стопорными муфтами, устанавливаемыми в точках с допустимой разностью уровней.
Другим выходом из положения является частичное удаление излишков пропиточного состава посредством операции «обеднения» изоляции. Кабели 1 и 3 кВ с обедненной пропитанной изоляцией могут прокладываться на трассах с разностью уровней до 100 м при наличии свинцовой оболочки и без ограничений разности уровней при наличии алюминиевой оболочки. Кабели 6 кВ при любой оболочке имеют допустимую разность уровней 100 м. Естественно, что при обеднении изоляции ее электрическая прочность оказывается ниже по сравнению с нормально пропитанной изоляцией и, следовательно, приходится компенсировать это снижение посредством увеличения толщины слоя бумажных лент. Так, например, толщина изоляции кабеля 6 кВ с обедненной пропиткой такая же, как и у кабеля 10 кВ с нормальной пропиткой. В связи с этим кабели с обедненной пропитанной изоляцией изготовляют на напряжения не выше 6 кВ.
Наконец, еще одна возможность состоит в пропитке бумажной изоляции нестекающим составом, т.е. составом такой вязкости, при которой исключается его перемещение даже на вертикальных участках трассы. Основным компонентом такого состава является церезин (монокристаллический воск). Кабели с бумажной изоляцией, пропитанной нестекающим составом, выпускаются на напряжения 6, 10 и 35 кВ, причем толщина слоя их изоляции несколько больше, чем при нормальной пропитке.
Кабели с пропитанной бумажной изоляцией изготовляются с медными или алюминиевыми жилами в свинцовой или алюминиевой оболочке с различными защитными покровами в зависимости от назначения и условий эксплуатации.
Одножильные кабели площадью сечения более 16 мм2 имеют круглую многопроволочную жилу. Основной конструкцией трехжильных кабелей на напряжение до 10 кВ являются кабели с поясной (общей) изоляцией в общей свинцовой или алюминиевой оболочке. Поперечное сечение кабеля такого типа показано на рис. 10.16.
Три изолированные бумажными лентами токопроводящие жилы скручены между собой и с заполнителями из корделя (бумажного жгута) для придания кабелю цилиндрической формы. Поверх них наматываются бумажные ленты, образующие поясную изоляцию. Следующий концентрический слой представляет собой металлическую бесшовную оболочку, герметизирующую внутреннее пространство с целью защиты от проникновения в изоляцию воздуха и влаги. Оболочка защищается от механических повреждений так называемой броней (из стальных лент, круглых или плоских проволок). Между броней и оболочкой имеется промежуточная про-
слойка (подушка), представляющая собой защитный покров оболочки из одного-двух слоев изолирующей ленты и пропитанной битумным составом бумажной пряжи. Она служит защитой оболочки от химических воздействий и повреждений броней, а также изоляцией по отношению к блуждающим токам. Наружный защитный покров нормально выполняется из хлопчатобумажных жгутов, пропитанных асфальтобитумным составом. Его функцией является защита стальной брони от химических воздействий и блуждающих токов.
В связи с чем в рассмотренной
конструкции помимо фазной изоляции
дополнительно используется и поясная?
Так как электрические сети с номинальным
напряжением 6—10 кВ в нашей стране обычно
работают с изолированной нейтралью, то
при замыкании на землю одной из фаз, как
известно, напряжение относительно земли
(оболочки) на двух других фазах возрастает
до междуфазного (линейного) напряжения.
При отсутствии дополнительной поясной
изоляции средняя напряженность
электрического поля в изоляции этих
фаз в таком режиме оказалась бы в
раз больше расчетной
напряженности поля для нормального
режима. В свою очередь, это обстоятельство
вызывает интенсивное развитие
ионизационных процессов в изоляции,
распространение ветвистых разрядов,
что в итоге может привести к пробою
изоляции кабеля. Для предотвращения
этого и необходимо усиление изоляции
между жилой и оболочкой до такой степени,
чтобы электрическая прочность изоляции
между жилами и между каждой жилой и
оболочкой в любых режимах была примерно
одинаковой. Этому условию отвечают
стандартизованные у нас значения толщин
фазной
и поясной
нормально пропитанной изоляции. Так,
например, для кабелей с
= 10 кВ
= 2,75 мм, а
= 1,25 мм.
Электрическое поле кабеля 6-—10 кВ с общей металлической оболочкой не является однородным. Силовые линии имеют различные углы наклона по отношению к слоям бумажной изоляции, что обусловливает наличие в ней как нормальных, так и тангенциальных составляющих. Однако слоистая бумажная изоляция имеет электрическую прочность в продольном направлении в 8—10 раз меньшую, чем в поперечном. Если при = 6—10 кВ еще можно выполнить экономически целесообразную конструкцию кабеля с электрическим полем такой конфигурации, то при больших номинальных напряжениях необходимо значительно увеличивать толщину изоляции, что экономически не оправдано. Более целесообразна конструкция кабеля с бумажной изоляцией, в которой электрическое поле имеет радиально направленные силовые линии. Это достигается размещением жилы каждой фазы в отдельной оболочке или экране, представляющих собой эквипотенциальные поверхности. В первом случае поверх бумажной изоляции фазы накладывается бесшовная свинцовая оболочка, во втором случае — слой тонкой перфорированной медной ленты или металлизированной бумаги, а затем общая для трех фаз свинцовая герметичная оболочка. Покрытие каждой фазы свинцовой оболочкой или экраном применяется при напряжениях 20 и 35 кВ. Кабели с жилами в отдельных свинцовых оболочках, изготовляемые в нашей стране, требуют меньше пропиточного состава и обладают лучшей гибкостью по сравнению с кабелями с пофазно экранированными жилами, хотя последние дешевле. Общий вид такого кабеля показан на рис. 10.17 (см. цветную вклейку).
При маркировке кабелей 6—35 кВ с бумажной пропитанной изоляцией используется последовательность русских букв, каждая из которых характеризует ту или иную конструктивную особенность или материал элементов соответствующего кабеля.
Так, буква Ц в начале марки обозначает кабель с пропиткой изоляции нестекающим составом, содержащим церезин. Нормальная пропитка не маркируется специально, а кабели с обедненной пропиткой изоляции в конце обозначения (через дефис) имеют букву В, что значит «предназначенный для вертикальной прокладки».
Буква А на втором (после Ц) месте обозначает алюминиевую жилу, медные жилы специально не маркируются. Буква О присутствует в обозначении кабелей 20—35 кВ с отдельно свинцовыми оболочками поверх каждой фазы. Далее следует обозначение свинцовой (С) или алюминиевой (А) оболочки.
Следующие три буквы характеризуют тип брони: из двух стальных лент (Б), круглых (К) или плоских (П) оцинкованных стальных проволок. Кабели с броней из двух стальных лент применяются при отсутствии значительных растягивающих усилий при прокладке в земле и в воздушной среде, а при наличии таковых используются кабели с броней из плоских проволок толщиной 1,5—1,7 мм. При прокладке в воде применяются кабели с броней из круглых проволок диаметром 4—6 мм. Далее, за обозначением типа брони могут идти буквы, которые отражают способ усиления подушки под броней: л (2 л) — в подушке имеется слой (два слоя) из пластмассовых лент, в (п) — в подушке имеется выпрессованный шланг из поливинилхлорида (полиэтилена).
В конце марки содержатся буквы, отражающие наличие и тип наружного защитного покрова: Г — отсутствие покрова поверх брони или оболочки («голый»), Шв (Шп) — покров из поливинилхлоридного (полиэтиленового) выпрессованного шланга; н — негорючий покров. Последний состоит из поливинилхлоридной оболочки или стеклянной пряжи, пропитанных негорючим составом. При высокой коррозионной активности грунта применяются кабели с покровами типа Шв или Шп.
В марках кабелей, выпущенных после 1.04.1985 г., на последнем месте имеется буква У, что означает «усовершенствованный», т.е. с изоляцией, допускающей эксплуатацию кабеля при повышенных температурах нагрева (65—80 °С).
Кабели с пластмассовой изоляцией
В последние десятилетия XX в. по мере развития технологии получения полимерных материалов все более сильную конкуренцию силовым кабелям с бумажно-масляной изоляцией составляли кабели, в которых в качестве ЭИМ применяется пластмасса либо в виде монолитного слоя, либо намотанная вокруг жил лентами аналогично бумажной изоляции. Основной тенденцией в производстве таких кабелей является освоение технологии наложения изоляции в конструкциях, предназначенных для работы в электрических сетях все более высоких номинальных напряжений. В настоящее время кабели с пластмассовой изоляцией выпускаются на напряжения до 500 кВ включительно, причем объем их производства постоянно увеличивается.
Это обстоятельство вызвано тем, что, несмотря на высокую эксплуатационную надежность и длительный срок службы, кабели с бумажно-масляной изоляцией обладают рядом недостатков. К их числу относится достаточная сложность технологии изготовления, необходимость защиты изоляции от проникновения влаги с помощью металлической оболочки, что увеличивает массу и стоимость кабеля, необходимость в аппаратуре подпитки у маслонаполненных кабелей, опасность загрязнения почвы маслом при их авариях и т.д.
Изготовление кабелей с пластмассовой изоляцией проще, так как в большинстве случаев она накладывается на жилы методом выдавливания (экструзии) на червячных прессах. Технологический процесс при этом более производителен по сравнению с намоткой бумажных лент, которые затем еще подвергаются сушке и пропитке. Обслуживание и ремонт кабельных линий с изоляцией жил полимерным материалом также оказываются более простыми. Этими факторами и объясняется то положение, что для вновь сооружаемых линий с напряжением до 35 кВ в настоящее время доля кабелей с пластмассовой изоляцией уже превышает долю кабелей с бумажной пропитанной изоляцией.
В качестве ЭИМ прежде всего используется полиэтилен, обладающий высокой электрической прочностью, гибкостью, малыми значениями диэлектрической проницаемости и тангенса угла диэлектрических потерь, хорошей влаго- и нагревостойкостью, а также высокой радиационной стойкостью. Вместе с тем обычный термопластичный полиэтилен обладает относительно низкой стойкостью к воздействию температур при коротких замыканиях. Вторым недостатком является его горючесть. В связи с этим наряду с термопластичным полиэтиленом для изоляции и защитных покровов кабелей используются и такие модификации, как вулканизированный (сшитый) и самозатухающий полиэтилен.
Для изоляции жил кабелей с номинальным напряжением до 10 кВ включительно применяется и полнейнилхлоридный пластикат, обладающий достаточной электрической прочностью, малой плотностью, хорошей водостойкостью. Он используется и для внешних защитных покровов, поскольку характеризуется высокой стойкостью к воздействию химически агрессивных сред (кислот, масел, промышленных газов, растворов щелочей и солей), а также к воздействию солнечной радиации. В отличие от термопластичного полиэтилена поливинилхлоридный пластикат обладает способностью прекращать горение после удаления из пламени, что обусловило его широкое применение в конструкциях кабелей, предназначенных для прокладки в помещениях. Однако относительная диэлектрическая проницаемость поливинилхлорида (ПВХ) в 2 раза, а тангенс угла диэлектрических потерь на два порядка выше, чем у полиэтилена. Поэтому для изоляции кабелей напряжением свыше 10 кВ этот материал не применяется [10.17]. Общий вид кабеля 380 В с изоляцией из ПВХ-пластиката показан на рис. 10.18 (см. цветную вклейку).
Маркировка кабелей с пластмассовой изоляцией использует частично буквы, уже встречающиеся в марках кабелей с бумажной изоляцией. Так, если на первом месте в марке кабеля находится буква А, то он имеет алюминиевые жилы (медные жилы специально не маркируются). На втором месте находятся буквы, идентифицирующие материал изоляции (В — поливинилхлоридный пластикат; П, Пс, Пв —- полиэтилен термопластичный, самозатухающий и вулканизированный соответственно). Буквы в следующей позиции характеризуют материал оболочки (А — алюминиевая, П — из полиэтилена, В — из ПВХ-пластиката, Внг — из ПВХ-пластиката пониженной горючести). Обозначения типа брони частично такие же, как и для кабелей с пропитанной бумажной изоляцией (Б — из двух стальных лент; К, П — из круглых или плоских стальных оцинкованных проволок). Кроме того, применяется и броня из круглых или плоских алюминиевых проволок, что отражается в марке символами Ка и Па соответственно. Буква б после обозначения типа брони соответствует отсутствию подушки под броней. У бронированных кабелей в последней позиции находятся буквы, характеризующие тип защитного покрова (Шв, Шп — шланг из ПВХ или полиэтилена) или его отсутствие (Г).
В настоящее время отечественной промышленностью выпускаются кабели на напряжения 0,66 и 1 кВ с одной, двумя, тремя и четырьмя жилами. Кабели на напряжения 3 и 6 кВ изготовляются только трехжильными, на напряжение 10 кВ — как трехжильными, так и одножильными, а на напряжение 35 кВ - — только одножильными. В качестве примера на рис. 10.19 показан кабель 10 кВ марки АПвП.
Номенклатура сечений одножильных кабелей 10 кВ с изоляцией из вулканизированного полиэтилена составляет 35—800 мм2, чему соответствуют внешние диаметры от 25 до 54 мм. Трехжильные же кабели 10 кВ имеют сечения от 35 до 300 мм2 и внешние диаметры соответственно 44—76 мм. Диаметры одножильных кабелей 35 кВ с такой же изоляцией и сечением жил 50—800 мм2 лежат в диапазоне 38—66 мм.
Трех- и четырехжильные кабели имеют круглые или секторные жилы. Так же, как и в кабелях с бумажной пропитанной изоляцией, в их конструкциях имеется слой обшей (поясной) изоляции. Она выпрессовывается в виде шланга из ПВХ либо наматывается лентами из того же материала или полиэтилентерефталатной пленки и бумаги. Толщина фазной изоляции из сшитого полиэтилена в одножильных кабелях 10 и 35 кВ составляет 4 и 9 мм соответственно.
Кабельная арматура
Для кабелей с вязкой пропиткой бумажной изоляции, а также для кабелей с пластмассовой изоляцией, работающих при напряжениях 1—35 кВ, при горизонтальной прокладке используются лишь концевые и соединительные муфты. При прокладке же кабелей с нормальной или обедненной пропиткой на вертикальных участках или трассах с большой разностью уровней применяют и стопорные муфты, предназначенные для секционирования линии с целью предотвращения стекания и перемещения пропитывающего состава вдоль линии.
Соединительные муфты. Жилы кабелей 1—35 кВ соединяют после предварительного снятия защитного покрова, оболочки, экрана по изоляции и части самой изоляции на определенной длине, определяемой из электрического расчета соединительной муфты. Для более равномерного распределения электрического поля внутри такой муфты соединение целесообразно производить таким образом, чтобы диаметр токоведущего элемента в месте соединения не увеличивался сверх диаметра жилы. Так как для соединения используются медные гильзы, то исходя из этих соображений с жилы кабеля удаляется один повив проволок, после чего на этот участок надевается гильза. Медные жилы соединяются опрессовкой или пайкой в гильзах, алюминиевые — термитной сваркой, пайкой в формочках и т.п. Затем производится операция по изолированию места соединения.
После этого подмотку экранируют. Экран соединения должен иметь электрический контакт с экранами по изоляции соединяемых строительных длин кабеля. В большинстве случаев при напряжениях 6—35 кВ роль экрана выполняет металлический корпус муфты, расположенный непосредственно поверх изолирующей подмотки. Для кабелей 6—10 кВ используются свинцовые, а для кабелей 20—35 кВ — латунные корпуса.
При прокладке в земле кабелей 6—10 кВ для защиты от коррозии и механических повреждений место соединения заключается в защитный чугунный разъемный кожух (для кабелей 20—35 кВ используются также стальные или стеклопластиковые кожухи). Эскиз конструкции свинцовой соединительной муфты марки СС для кабелей 6—10 кВ показан на рис. 10.20.
Последняя операция по монтажу соединительной муфты заключается в заполнении пространства между металлическим корпусом и подмоткой заливочным составом. Муфты кабелей до 10 к В с бумажной изоляцией заполняются битуминозными составами, кабелей 20 и 35 кВ — маслоканифольными.
Для кабелей с пластмассовой изоляцией, а также в ряде случаев для кабелей с пропитанной бумажной изоляцией применяются и эпоксидные соединительные муфты, имеющие разъемный корпус, который после монтажа заливается эпоксидным компаундом. Для кабелей с пластмассовой изоляцией на напряжения 1—35 кВ используются также трехфазные и однофазные соединительные муфты, в которых подмотка места соединения жил осуществляется самосклеивающимися резиновыми лентами [10.2]. В последнее время стали широко применяться и муфты с использованием термоусаживаемых материалов как для изоляции места соединения, так и для образования внешнего защитного покрова.
Число соединительных муфт на 1 км линии I —10 кВ в зависимости от сечения жил для трехжильных кабелей составляет 4—5, для кабелей 20— 35 кВ — обычно 6.
Концевые муфты кабелей 1—35 кВ могут быть предназначены для наружной и внутренней установки. В последнем случае их принято называть концевыми заделками. Распространенным типом концевой заделки кабелей 6—10 кВ с пропитанной бумажной изоляцией до недавнего времени являлась эпоксидная заделка с трехслойными изолирующими трубками (внешний и внутренний слой из поливинилхлорида, промежуточный — из полиэтилена), надеваемыми на выступающие из корпуса муфты концы жил кабеля (рис. 10.21). Она применяется как в сухих помещениях, гак и в помещениях с высокой влажностью (например, в районах с тропическим климатом). Такие заделки характеризуются высокой стойкостью против действия внутреннего давления пропиточной массы и проникновения влаги, эластичностью трубчатого покрова жил и простотой монтажа.
Наряду с эпоксидными заделками для кабелей 6—10 кВ с пропитанной бумажной изоляцией в сухих помещениях допускается использование концевых заделок в стальной воронке и в свинцовой перчатке. Для кабелей 1—10 кВ с пластмассовой изоляцией в сухих помещениях применяются заделки с обмоткой жил липкой поливинилхлоридной лентой; во влажных помещениях такие заделки оснащаются эпоксидным корпусом, препятствующим проникновению влаги в изоляцию кабеля. Современная тенденция состоит в использовании концевых заделок из термо-усаживаемых материалов.
Арматура для оконцевания кабелей 1—35 кВ с пропитанной бумажной изоляцией при ее установке на открытом воздухе имеет следующие разновидности:
мачтовые концевые муфты для кабелей 1—10 кВ с металлическим корпусом и фарфоровыми изоляторами, устанавливаемые на опоре воздушной линии в месте ее соединения с кабельной;
трех- и однофазные концевые муфты с металлическим корпусом и фарфоровыми изоляторами для кабелей 6—10 кВ;
однофазная концевая муфта с металлическим корпусом и фарфоровым изолятором для кабелей 20 и 35 кВ с отдельно освинцованными жилами (рис. 10.22).
Для трехжильных кабелей с пластмассовой изоляцией при напряжениях 1 —10 кВ для наружной установки используются муфты с эпоксидным корпусом и эластомерными (резиноподобными) изоляторами марки ПКНР. Отличительной особенностью таких муфт является изоляция жил термоуса-живаемыми поливинилхлоридными трубками. Они герметизируют место соединения жилы кабеля с наконечником, а нижним концом входят в эпоксидный корпус. Сверху на трубки надеваются эластомерные изоляторы. Для одножильных кабелей 10 и 35 кВ с пластмассовой изоляцией применяют эластомерные концевые муфты марки ПКНРО. В отличие от муфт марки ПКНР
они не имеют эпоксидного корпуса и собираются на месте монтажа из деталей, изготовленных на заводе из изоляционных и полу про водящих композиций на основе кремнийорганической резины [10.2].
Стопорные муфты на кабельных линиях 1—35 кВ устанавливаются при переходе от горизонтально проложенного кабеля с нормально пропитанной бумажной изоляцией к кабелю, проложенному наклонно или вертикально вниз и имеющему обедненно пропитанную изоляцию или изоляцию, пропитанную нестекающей массой. Кроме того, они используются в точках секционирования линии на участки с максимально допустимой разностью уровней для данного типа кабелей. Стопорная муфта отличается от соединительной наличием стопора, представляющего собой устройство, аналогичное проходному изолятору, и перекрывающего в центре муфты проход для пропитывающего состава.