- •Предисловие авторов
- •Теоретические основы электротехники
- •1.1. Предмет, основные разделы и понятия теоретических основ электротехники
- •1.2. Электрические цепи: элементы, схемы, законы, классификация
- •1.3. Электромагнитные процессы и режимы электрических цепей. Режим синусоидальных токов
- •1.4. Мощности в цепях синусоидального тока
- •1.5. Трехфазные цепи: фазные и линейные токи, напряжения, мощности
- •1.6. Электрические цепи несинусоидальных токов
- •1.7. Высшие гармоники в трехфазных цепях
- •1.8. Мощности в цепях несинусоидальных токов
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Краткая история электроэнергетики. Электроэнергетические системы
- •2.1. Введение
- •А) различием в моментах появления пика нагрузки обеих энергосистем; это различие может сильно изменяться в различные периоды года;
- •Б) различием в моментах появления недельного, месячного или годового максимума.
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Режимы работы ээс и управление ими
- •Для сетей 35 кВ — при трехфазном коротком замыкании;
- •Для сетей 110—1150 кВ — при двухфазном коротком замыкании на землю.
- •3.4. Средства управления режимами и их функции
- •3.5. Регулирование напряжения в электрических сетях
- •3.6. Регулирование частоты и мощности в энергосистемах
- •Первичное регулирование частоты, обеспечивающее стабильность частоты, т.Е. Удержание отклонений частоты в допустимых рамках при нарушении общего баланса мощности в любой части энергосистемы;
- •Вторичное регулирование, обеспечивающее восстановление нормального уровня частоты и плановых режимов обмена мощностью между частями энергосистемы или регионами;
- •Централизованное регулирование частоты в сочетании с региональным регулированием мощности электростанций;
- •Децентрализованное комплексное регулирование частоты и перетоков мощности.
- •Управляющие вычислительные центры (увц) в цду еэс, оду оэс, цдс ээс, диспетчерские пункты (дп) предприятий электрических сетей (пэс);
- •Автоматизированные системы управления технологическими процессами (асутп) электростанций, энергоблоков электростанций и подстанций;
- •Централизованные и локальные системы автоматического регулирования и управления.
- •3.11. Структура системы противоаварийной автоматики
- •Литература для самостоятельного изучения
- •Электрические схемы электростанций и подстанций
- •4.1. Общие сведения
- •4.2. Основные требования, предъявляемые к схемам распределительных устройств электроустановок
- •4.5. Схемы, применяемые на высшем и среднем напряжениях
- •4.7. Структурные схемы электрических станций и подстанций
- •4.8. Электроснабжение собственных нужд электростанций и подстанций
- •4.9. Примеры исполнения электрических схем электростанций и подстанций
- •Контрольные вопросы.
- •Литература для самостоятельного изучения.
- •Глава пятая системы электроснабжения
- •5.1. Общая характеристика систем электроснабжения
- •5.2. Основные группы потребителей электроэнергии
- •5.3. Основные условия и задачи формирования систем электроснабжения
- •5.4. Номинальные напряжения электроустановок
- •5.5. Основные типы схем электрических сетей
- •5.6. Режим нейтрали электрических сетей
- •12.7. Конструкции линий, подстанций и их основного электрооборудования
- •5.8. Основные вопросы проектирования и расчетов сэс
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Качество электроэнергии в системах электроснабжения
- •6.1. Качество электрической энергии
- •6.2. Показатели качества электроэнергии
- •6.3. Влияние качества электроэнергии на функционирование технических средств
- •6.4. Технические средства контроля качества электроэнергии
- •6.5. Обеспечение качества электроэнергии
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Электрические машины электростанций
- •7.1. Конструкции синхронных генераторов
- •7.2. Принцип действия синхронных генераторов
- •7.3. Типы турбо- и гидрогенераторов по мощностям и способам охлаждения
- •7.3.1. Турбогенераторы
- •7.3.2. Гидрогенераторы
- •7.4. Системы возбуждения генераторов
- •7.5. Совершенствование изоляции обмоток синхронных генераторов
- •3.6. Характеристики генераторов, работающих на автономную сеть
- •3.7. Включение генераторов на параллельную работу с сетью постоянного напряжения и постоянной частоты
- •7.8. Угловая характеристика. Статическая устойчивость работы генераторов при работе параллельно с сетью бесконечной мощности. V-образные характеристики генераторов
- •7.9. Синхронные двигатели
- •7.10. Синхронные компенсаторы
- •7.11. Синхронные машины продольно-поперечного возбуждения. Асинхронизированные синхронные машины
- •7.12. Асинхронные двигатели
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Трансформаторное оборудование
- •8.1. Общие вопросы
- •4.2. Принцип работы и устройство трансформатора
- •8.3. Автотрансформаторы
- •8.4. Конструкция трансформатора
- •4.5. Изоляция в трансформаторах
- •4.6. Потери и коэффициент полезного действия трансформатора
- •4.7. Структура условного обозначения типа трансформатора
- •А) масляные трансформаторы:
- •Б) трансформаторы с жидким негорючим диэлектриком:
- •В) сухие трансформаторы:
- •8.8. Измерительные трансформаторы
- •4.9. Современное состояние, тенденции развития трансформаторостроения
- •8.10. Реакторы
- •Контрольные вопросы:
- •Литература для самостоятельного изучения
- •Коммутационные и защитные аппараты высокого напряжения. Силовые конденсаторы
- •9.2. Условия работы аппаратов высокого напряжения и общие требования, предъявляемые к ним
- •9.3. Выключатели высокого напряжения
- •9.3.1. Воздушные выключатели
- •9.3.2. Элегазовые выключатели
- •9.3.3. Масляные выключатели
- •Баковые (многообъемные) масляные выключатели, в которых масло используется для гашения и изоляции токоведущих частей от заземленного бака;
- •Маломасляные (малообъемные) масляные выключатели, в которых масло используется только для гашения дуги и изоляции между разомкнутыми контактами одного полюса.
- •Интенсивное дутье газопаровой смеси в зоне дуги, особенно в момент тока, близкого к нулю;
- •Максимально возможное высокое давление газопаровой смеси в области дуги в конце полупериода тока.
- •9.3.4. Электромагнитные выключатели
- •9.3.5. Вакуумные выключатели
- •9.4. Разъединители, отделители, короткозамыкатели
- •9.5. Комплектные распределительные устройства
- •9.5.1. Комплектные ру 10-35 кВ
- •9.5.2. Герметизированные комплектные ру на основе элегаза (круэ)
- •9.6. Защитные и токоограничивающие аппараты
- •9.7. Силовые конденсаторы
- •9.7.1. Основные характеристики силовых конденсаторов
- •9.7.2. Электротехнические материалы, применяемые в силовых конденсаторах
- •9.7.3. Конструкции и области применения силовых конденсаторов
- •9.8. Перспективы развития коммутационных аппаратов в мире
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Технические средства передачи электроэнергии
- •10.1.Основные понятия и определения
- •Линии открытого типа (воздушные);
- •Линии закрытого типа (кабельные).
- •10.2.Общая характеристика воздушной линии и условий ее работы
- •10.3.Провода и грозозащитные тросы
- •10.4. Классификация опор
- •Одноцепные, которые применяются при сооружении вл любых номинальных напряжений;
- •Двухцепные, которые в России применяются для вл 35—330 кВ, а за рубежом и на линиях 380—500 кВ;
- •10.5. Изоляторы и линейная арматура
- •Стеклянной или фарфоровой изолирующей детали в виде тела вращения с ребрами на нижней поверхности и с внутренней полостью конической или цилиндрической формы;
- •Шапки из ковкого чугуна, в верхней части которой имеется сферическая полость (гнездо), предназначенная для шарнирного сопряжения с другим изолятором;
- •Стержня, нижняя головка которого имеет сферическую поверхность, сопрягаемую с соответствующей поверхностью в гнезде шапки.
- •10.6. Геометрические характеристики
- •Ее токоведущих элементов (проводов) и заземленных частей (траверс и стоек опоры);
- •Проводов и грозозащитных тросов, если последние предусмотрены конструкцией;
- •Проводов в нижней точке их провисания в пролете относительно поверхности земли.
- •10.7. Общая характеристика кабельных линий
- •10.8. Кабельные линии низкого и среднего напряжений
- •10.9. Кабельные линии высокого напряжения
- •10.10. Основные сведения о сооружении кабельных линий
- •10.11. Электрические характеристики линий электропередачи переменного тока
- •10.11.1. Одноцепная транспонированная воздушная линия с нерасщепленной фазой
- •Погонное индуктивное сопротивление
- •Погонная емкостная проводимость
- •Погонная активная проводимость
- •Волновые параметры и натуральная мощность
- •10.11.2. Одноцепная транспонированная воздушная линия с расщепленной фазой
- •Погонное активное сопротивление
- •Погонные активные сопротивления и диаметры сталеалюминиевых проводов облегченного исполнения (по гост 839-80)
- •Волновые параметры и натуральная мощность
- •10.11.3. Двухцепная транспонированная воздушная линия
- •10.11.4. Кабельные линии
- •Погонное активное сопротивление
- •Погонные реактивные параметры
- •Погонная активная проводимость
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Электропередачи и вставки постоянного тока. Управляемые (гибкие) линии переменного тока
- •11.1. Возможные области применения электропередач и вставок постоянного тока
- •11.3. Схемы электропередач и вставок постоянного тока
- •Средним значением тока, протекающим через него за период частоты сети Iср;
- •Максимальным значением напряжения, которое прикладывается к нему как в прямом, так и обратном направлении, когда вентиль закрыт, и которое этот вентиль должен выдержать Uобр max.
- •1) Создает необходимое выпрямительное напряжение Udм, что обеспечивается выбором соответствующего коэффициента трансформации;
- •2) Электрически отделяет цепь выпрямленного тока от сети переменного тока.
- •Регулятор угла α на выпрямителе, исключающий длительную работу последнего при повышенных значениях этого угла, что ведет к увеличению потребления реактивной мощности из сети;
- •Регулятор баланса токов полуцепей, предназначенный для снижения до минимума тока в земле.
- •11.4. Энергетические характеристики преобразователей
- •11.6. Технико-экономические показатели электропередач постоянного тока
- •11.7. Управляемые (гибкие) линии переменного тока
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Силовая электроника
- •12.1. Введение
- •6.2. Силовые электронные ключи
- •На стороне переменного тока;
- •На стороне постоянного тока;
- •Непосредственным управлением ключевыми элементами схемы.
- •Преобразователи с промежуточным звеном постоянного тока (непрямые преобразователи);
- •Преобразователи с непосредственной связью питающей сети и цепей нагрузки, которые в литературе иногда называются преобразователями с неявно выраженным звеном постоянного тока.
- •Преобразователи с прямой передачей энергии в нагрузку;
- •Преобразователи с накоплением энергии в промежуточных элементах схемы с последующей передачей в нагрузку. Функции таких накопителей обычно выполняют индуктивные накопители (реакторы).
- •12.4. Применение силовой электроники в электроэнергетике
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Релейная защита
- •13.1. Назначение релейной зашиты. Требования, предъявляемые к релейной защите
- •13.2. Структурная схема рз, подключение рз к защищаемому объекту
- •13.3. Токовые защиты
- •15.4. Дистанционная защита
- •15.5. Продольная дифференциальная токовая защита
- •15.6. Поперечная дифференциальная токовая защита
- •15.7. Направленная защита с высокочастотной блокировкой
- •15.8. Дифференциально-фазная защита
- •15.9. Комплексы релейной защиты
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Электротехнические материалы
- •14.1. Общие положения
- •14.2. Проводниковые материалы
- •14.3. Электроизоляционные материалы
- •14.4. Магнитные материалы
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Техника высоких напряжений (твн)
- •15.1. Предмет техники высоких напряжений (твн)
- •15.2. Механизм нарушения электрической изоляции
- •15.3. Характеристика отдельных видов изоляции
- •15.3.1. Воздушная изоляция
- •15.3.2. Назначение и типы изоляторов
- •15.3.3. Внутренняя изоляция
- •15.4. Электрические воздействия на электрическую изоляцию
- •15.4.1. Грозовые перенапряжения и их ограничение
- •15.4.2, Коммутационные перенапряжения и их ограничение
- •15.5. Испытания изоляции электрооборудования
- •15.5.1. Испытания оборудования в процессе изготовления
- •15.5.2. Профилактические испытания изоляции в эксплуатации
- •15.5.3. Испытательное оборудование
- •15.6. Перспективные направления развития техники высоких напряжений
- •15.6.1. Особенности проектирования изоляции оборудования постоянного тока
- •15.6.2. Особенности проектирования изоляции оборудования ультравысокого напряжения
- •Контрольные вопросы
- •Литература для самостоятельного изучения:
- •Сверхпроводимость
- •16.1. Общие сведения
- •16.2. Основные виды сверхпроводникового (сп) оборудования Введение
- •16.2.1. Кабельные линии электропередачи
- •16.2.2. Трансформаторы
- •16.2.3. Ограничители токов кз
- •16.2.4. Индуктивные и кинетические накопители энергии
- •16.2.5. Электрические машины
- •16.3. Ситуация с освоением сп-техники в электроэнергетике России
- •Контрольные вопросы
- •Литература
- •Гидроэнергетика и другие возобновляемые источники энергии
- •17.1. Гидроэнергетические ресурсы
- •Напоров — гидравлические в водоводах, бьефах, на неиспользуемых участках водотоков;
- •Расходов — испарение из водохранилищ, фильтрацию, холостые сбросы и т.П.;
- •Энергии в оборудовании.
- •17.4. Регулирование стока реки водохранилищем
- •17.5. Гидроэлектростанции и их энергетическое оборудование
- •Гаэс — в режимах генератора, электродвигателя, синхронного компенсатора и вращающегося резерва.
- •17.6. Мощность гэс и выработка энергии
- •17.7. Гидротехнические сооружения гэс
- •17.8. Гидроаккумулирующие электростанции
- •17.9. Солнечная энергетика
- •По виду преобразования солнечной энергии в другие виды энергии — тепло или электричество;
- •По концентрированию энергии — с концентраторами и без концентраторов;
- •По технической сложности — простые (нагрев воды, сушилки, нагревательные печи, опреснители и т.П.) и сложные.
- •17.10. Ветроэнергетика
- •По мощности — малые (до 10 кВт), средние (от 10 до 100 кВт), крупные (от 100 до 1000 кВт), сверхкрупные (более 1000 кВт);
- •По числу лопастей рабочего колеса — одно-, двух-, трех- и многолопастные;
- •По отношению рабочего колеса к направлению воздушного потока — с горизонтальной осью вращения, параллельной (рис. 17.16) или перпендикулярной вектору скорости (ротор Дарье) (рис. 17.17).
- •17.11. Геотермальная энергетика
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Приложение 1
- •Приложение 2
- •Словарь основных терминов
1.3. Электромагнитные процессы и режимы электрических цепей. Режим синусоидальных токов
Электромагнитные процессы электрических цепей принято делить на установившиеся, когда токи и напряжения всех элементов цепи описываются периодическими функциями времени (как, например, в цепях постоянного и синусоидального токов), и переходные. Последними называются процессы перехода от одного установившегося состояния к другому. Установившиеся процессы принято называть режимами; так, говорят о режиме постоянного тока и режиме синусоидального тока. В последнем случае токи и напряжения всех элементов имеют вид i = Imsin(ωt + ψi), u = Umsin(ωt + ψu), где ω = 2πf— угловая частота; f = 1/T — частота процесса (Т — его период), Im и Um — амплитуды токов и напряжений, а ψi и ωu — их начальные фазы (рис. 1.17).
Разность фаз φ = ψu – ψi называется их сдвигом. Из выражений (1.3)—(1.5) следует, что на резисторе фазы напряжения и тока совпадают (φ = 0), на конденсаторе фаза напряжения ψu отстает от фазы тока на угол π/2 (φ = –π/2), а на индуктивной катушке ψu опережает ψi на угол π /2 (φ = π /2). Для оценки интенсивности синусоидальных процессов вводят понятие о действующих значениях токов, напряжений, ЭДС. Для введения этого понятия рассмотрим среднее за период значение мгновенной мощности, характеризующее выделение теплоты в резисторе:
|
|
Если учесть, что
|
|
где
.
Величину I называют действующим
значением синусоидального тока с
амплитудой Im. Численно
она равна постоянному току, который
вызывал бы в резисторе такие же потери
энергии за период времени Т, как и
рассматриваемый синусоидальный ток.
Действующие значения напряжения U
и ЭДС Е также связывают с их
амплитудными значениями соотношениями
и
.
Режим синусоидальных токов играет особую роль в электроэнергетике, поскольку генерация, передача, распределение энергии происходят в основном именно в этом режиме при частоте f = 50 1/с, или 50 Гц (в США — 60 Гц), называемой промышленной частотой. Поэтому методам описания и расчета такого режима обычно уделяют повышенное внимание.
Основным методом расчета электрических
цепей синусоидальных токов (расчета
синусоидальных режимов) является
комплексный или символический
метод, предложенный американским
инженером Ч. Штейнмецом. Суть его
заключается в том, что каждой синусоидальной
функции времени (тока, напряжения, ЭДС)
сопоставляется комплексное число, а
всем действиям с этими функциями —
весьма простые действия с комплексными
числами. Так, синусоидальным функциям
тока i = Imsin(ωt + ψi)
и напряжения u = Imsin(ωt
+ ψu), графики которых изображены
на (рис. 1.17), можно сопоставить комплексные
амплитуды
,
или
коплексные действующие значения
,
,
которые можно изобразить на комплексной
плоскости соответствующими векторами
(рис. 1.18). Здесь вертикальная ось — ось
мнимых чисел, горизонтальная —
вещественных чисел. Помимо такой
показательной формы записи комплексов
I, U, последние можно
представить и в алгебраической форме
I = ReI + j ImI,
U = ReU + j ImU.
Компонентные уравнения (1.3)—(1.5)
в комплексном методе приобретают чисто
алгебраический вид U = RI,
I = jωCU, U
= jωLI, где j — мнимая
единица (иначе, оператор поворота)*.
Таким образом, схеме рис. 1.10 в этом методе
сопоставляется комплексная схема
замещения, изображенная на рис. 1.19.
Полная система уравнений такой схемы
I1 – I2 – I3
= 0, U1 + U2 – U
= 0, U2 = U3, U
= E, U1 = RI,
U2 = jωLI2,
,
носит чисто алгебраический характер.
Заметим, что последние три уравнения
выражают закон Ома для резистивного и
двух реактивных (индуктивного и
емкостного) элементов.
Параметры R, ωL = XL
и 1/ωС = ХC называют
соответственно активным, индуктивным
и емкостным сопротивлениями. Решив
последние семь уравнений в комплексной
области, можно затем от комплексов токов
и напряжений всех элементов перейти к
соответствующим функциям времени.
Комплексным сопротивлением Z
(или комплексной проводимостью Y
= 1/Z) можно охарактеризовать и
любой пассивный двухполюсник (т.е. часть
цепи, подсоединенную к остальной цепи
двумя узлами). Так, комплексное
сопротивление пассивного двухполюсника,
подсоединенного к источнику Е,
,
где Z2 = jωL, Z3
= 1/jωC. Зная его, можно сразу же
рассчитать входной ток цепи I1
= U/Z = E/Z.
Таким образом, комплексный метод расчета позволяет алгебраизовать систему уравнений цепи, а само введение комплексов дает богатые возможности привлечения геометрических построений при суммировании или умножении векторов, соответствующих этим комплексам.
В цепях синусоидального тока особую роль играет понятие резонанса. При резонансе амплитуды тока и напряжения какого-либо участка цепи резко возрастают, а сами ток и напряжение оказываются полностью совпадающими по фазе. Рассмотрим последовательное соединение резистора с сопротивлением R, катушки с индуктивностью L и конденсатора с емкостью С (рис. 1.20, а). Эквивалентное сопротивление этого участка цепи
|
|
а его модуль
будет
иметь минимальное значение Z = R
при ωL = 1/ωС. При заданном напряжении
участка U ток I будет максимален
при минимальном Z = R, фаза тока
I = U/Z при Z
= R будет совпадать с фазой напряжения.
Поэтому рассмотренный случай равенства
индуктивного ωL и емкостного 1/ωС
сопротивлений как раз и определяет
условие резонанса. Очевидно, что достичь
условия ωL = 1/ωС можно, изменяя
любой из трех параметров ω, L, С.
В частности, резонанса можно достичь,
меняя угловую частоту до значения
.
Рассмотрим векторные диаграммы трех случаев соотношений XL = ωL и XС = 1/ωС. В первом случае XL > ХС и цепь носит активно-индуктивный характер, входное напряжение U опережает по фазе ток I цепи (рис. 1.20, б). Во втором случае XL < ХС и цепь носит активно-емкостной характер, напряжение U отстает по фазе от тока I (рис. 1.20, в). В резонансном случае XL = ХС, а напряжение на катушке равно по модулю напряжению на конденсаторе и противоположно по фазе: UL = –UC, они компенсируются, и со стороны входных узлов цепь может рассматриваться как чисто резистивная (рис. 1.20, г).
В общем случае мы будем рассматривать некоторый пассивный двухполюсник (рис. 1.21, а), состоящий из резисторов, катушек, конденсаторов и находящийся в условиях резонанса, если его входные ток I и напряжение U совпадают по фазе, т.е. его входное сопротивление Z = U/I носит чисто резистивный характер (Z = R). Такой двухполюсник можно заменить резистивным элементом (рис. 1.21, б).
Рассмотрим в качестве еще одного примера резонанс токов, возникающий в цепи, изображенной на рис. 1.22, а, при условии равенства проводимостей катушки 1/ωL, и конденсатора ωС. Токи IL и IC в этих элементах будут равны и противоположно направлены, что графически изображено на векторной диаграмме (рис. 1.22, б). При заданном токе I напряжение U цепи (рис. 1.22, а) будет максимальным по модулю и совпадающим по фазе с током при активной проводимости G = 1/R.
Резонанс на практике играет как положительную, так и отрицательную роль. На основе явления резонанса решается так называемая задача компенсации реактивной мощности (см. следующий параграф), позволяющая достичь наибольшей эффективности передачи электрической энергии в электроустановках и энергосистемах.

,