
- •Предисловие авторов
- •Теоретические основы электротехники
- •1.1. Предмет, основные разделы и понятия теоретических основ электротехники
- •1.2. Электрические цепи: элементы, схемы, законы, классификация
- •1.3. Электромагнитные процессы и режимы электрических цепей. Режим синусоидальных токов
- •1.4. Мощности в цепях синусоидального тока
- •1.5. Трехфазные цепи: фазные и линейные токи, напряжения, мощности
- •1.6. Электрические цепи несинусоидальных токов
- •1.7. Высшие гармоники в трехфазных цепях
- •1.8. Мощности в цепях несинусоидальных токов
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Краткая история электроэнергетики. Электроэнергетические системы
- •2.1. Введение
- •А) различием в моментах появления пика нагрузки обеих энергосистем; это различие может сильно изменяться в различные периоды года;
- •Б) различием в моментах появления недельного, месячного или годового максимума.
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Режимы работы ээс и управление ими
- •Для сетей 35 кВ — при трехфазном коротком замыкании;
- •Для сетей 110—1150 кВ — при двухфазном коротком замыкании на землю.
- •3.4. Средства управления режимами и их функции
- •3.5. Регулирование напряжения в электрических сетях
- •3.6. Регулирование частоты и мощности в энергосистемах
- •Первичное регулирование частоты, обеспечивающее стабильность частоты, т.Е. Удержание отклонений частоты в допустимых рамках при нарушении общего баланса мощности в любой части энергосистемы;
- •Вторичное регулирование, обеспечивающее восстановление нормального уровня частоты и плановых режимов обмена мощностью между частями энергосистемы или регионами;
- •Централизованное регулирование частоты в сочетании с региональным регулированием мощности электростанций;
- •Децентрализованное комплексное регулирование частоты и перетоков мощности.
- •Управляющие вычислительные центры (увц) в цду еэс, оду оэс, цдс ээс, диспетчерские пункты (дп) предприятий электрических сетей (пэс);
- •Автоматизированные системы управления технологическими процессами (асутп) электростанций, энергоблоков электростанций и подстанций;
- •Централизованные и локальные системы автоматического регулирования и управления.
- •3.11. Структура системы противоаварийной автоматики
- •Литература для самостоятельного изучения
- •Электрические схемы электростанций и подстанций
- •4.1. Общие сведения
- •4.2. Основные требования, предъявляемые к схемам распределительных устройств электроустановок
- •4.5. Схемы, применяемые на высшем и среднем напряжениях
- •4.7. Структурные схемы электрических станций и подстанций
- •4.8. Электроснабжение собственных нужд электростанций и подстанций
- •4.9. Примеры исполнения электрических схем электростанций и подстанций
- •Контрольные вопросы.
- •Литература для самостоятельного изучения.
- •Глава пятая системы электроснабжения
- •5.1. Общая характеристика систем электроснабжения
- •5.2. Основные группы потребителей электроэнергии
- •5.3. Основные условия и задачи формирования систем электроснабжения
- •5.4. Номинальные напряжения электроустановок
- •5.5. Основные типы схем электрических сетей
- •5.6. Режим нейтрали электрических сетей
- •12.7. Конструкции линий, подстанций и их основного электрооборудования
- •5.8. Основные вопросы проектирования и расчетов сэс
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Качество электроэнергии в системах электроснабжения
- •6.1. Качество электрической энергии
- •6.2. Показатели качества электроэнергии
- •6.3. Влияние качества электроэнергии на функционирование технических средств
- •6.4. Технические средства контроля качества электроэнергии
- •6.5. Обеспечение качества электроэнергии
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Электрические машины электростанций
- •7.1. Конструкции синхронных генераторов
- •7.2. Принцип действия синхронных генераторов
- •7.3. Типы турбо- и гидрогенераторов по мощностям и способам охлаждения
- •7.3.1. Турбогенераторы
- •7.3.2. Гидрогенераторы
- •7.4. Системы возбуждения генераторов
- •7.5. Совершенствование изоляции обмоток синхронных генераторов
- •3.6. Характеристики генераторов, работающих на автономную сеть
- •3.7. Включение генераторов на параллельную работу с сетью постоянного напряжения и постоянной частоты
- •7.8. Угловая характеристика. Статическая устойчивость работы генераторов при работе параллельно с сетью бесконечной мощности. V-образные характеристики генераторов
- •7.9. Синхронные двигатели
- •7.10. Синхронные компенсаторы
- •7.11. Синхронные машины продольно-поперечного возбуждения. Асинхронизированные синхронные машины
- •7.12. Асинхронные двигатели
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Трансформаторное оборудование
- •8.1. Общие вопросы
- •4.2. Принцип работы и устройство трансформатора
- •8.3. Автотрансформаторы
- •8.4. Конструкция трансформатора
- •4.5. Изоляция в трансформаторах
- •4.6. Потери и коэффициент полезного действия трансформатора
- •4.7. Структура условного обозначения типа трансформатора
- •А) масляные трансформаторы:
- •Б) трансформаторы с жидким негорючим диэлектриком:
- •В) сухие трансформаторы:
- •8.8. Измерительные трансформаторы
- •4.9. Современное состояние, тенденции развития трансформаторостроения
- •8.10. Реакторы
- •Контрольные вопросы:
- •Литература для самостоятельного изучения
- •Коммутационные и защитные аппараты высокого напряжения. Силовые конденсаторы
- •9.2. Условия работы аппаратов высокого напряжения и общие требования, предъявляемые к ним
- •9.3. Выключатели высокого напряжения
- •9.3.1. Воздушные выключатели
- •9.3.2. Элегазовые выключатели
- •9.3.3. Масляные выключатели
- •Баковые (многообъемные) масляные выключатели, в которых масло используется для гашения и изоляции токоведущих частей от заземленного бака;
- •Маломасляные (малообъемные) масляные выключатели, в которых масло используется только для гашения дуги и изоляции между разомкнутыми контактами одного полюса.
- •Интенсивное дутье газопаровой смеси в зоне дуги, особенно в момент тока, близкого к нулю;
- •Максимально возможное высокое давление газопаровой смеси в области дуги в конце полупериода тока.
- •9.3.4. Электромагнитные выключатели
- •9.3.5. Вакуумные выключатели
- •9.4. Разъединители, отделители, короткозамыкатели
- •9.5. Комплектные распределительные устройства
- •9.5.1. Комплектные ру 10-35 кВ
- •9.5.2. Герметизированные комплектные ру на основе элегаза (круэ)
- •9.6. Защитные и токоограничивающие аппараты
- •9.7. Силовые конденсаторы
- •9.7.1. Основные характеристики силовых конденсаторов
- •9.7.2. Электротехнические материалы, применяемые в силовых конденсаторах
- •9.7.3. Конструкции и области применения силовых конденсаторов
- •9.8. Перспективы развития коммутационных аппаратов в мире
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Технические средства передачи электроэнергии
- •10.1.Основные понятия и определения
- •Линии открытого типа (воздушные);
- •Линии закрытого типа (кабельные).
- •10.2.Общая характеристика воздушной линии и условий ее работы
- •10.3.Провода и грозозащитные тросы
- •10.4. Классификация опор
- •Одноцепные, которые применяются при сооружении вл любых номинальных напряжений;
- •Двухцепные, которые в России применяются для вл 35—330 кВ, а за рубежом и на линиях 380—500 кВ;
- •10.5. Изоляторы и линейная арматура
- •Стеклянной или фарфоровой изолирующей детали в виде тела вращения с ребрами на нижней поверхности и с внутренней полостью конической или цилиндрической формы;
- •Шапки из ковкого чугуна, в верхней части которой имеется сферическая полость (гнездо), предназначенная для шарнирного сопряжения с другим изолятором;
- •Стержня, нижняя головка которого имеет сферическую поверхность, сопрягаемую с соответствующей поверхностью в гнезде шапки.
- •10.6. Геометрические характеристики
- •Ее токоведущих элементов (проводов) и заземленных частей (траверс и стоек опоры);
- •Проводов и грозозащитных тросов, если последние предусмотрены конструкцией;
- •Проводов в нижней точке их провисания в пролете относительно поверхности земли.
- •10.7. Общая характеристика кабельных линий
- •10.8. Кабельные линии низкого и среднего напряжений
- •10.9. Кабельные линии высокого напряжения
- •10.10. Основные сведения о сооружении кабельных линий
- •10.11. Электрические характеристики линий электропередачи переменного тока
- •10.11.1. Одноцепная транспонированная воздушная линия с нерасщепленной фазой
- •Погонное индуктивное сопротивление
- •Погонная емкостная проводимость
- •Погонная активная проводимость
- •Волновые параметры и натуральная мощность
- •10.11.2. Одноцепная транспонированная воздушная линия с расщепленной фазой
- •Погонное активное сопротивление
- •Погонные активные сопротивления и диаметры сталеалюминиевых проводов облегченного исполнения (по гост 839-80)
- •Волновые параметры и натуральная мощность
- •10.11.3. Двухцепная транспонированная воздушная линия
- •10.11.4. Кабельные линии
- •Погонное активное сопротивление
- •Погонные реактивные параметры
- •Погонная активная проводимость
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Электропередачи и вставки постоянного тока. Управляемые (гибкие) линии переменного тока
- •11.1. Возможные области применения электропередач и вставок постоянного тока
- •11.3. Схемы электропередач и вставок постоянного тока
- •Средним значением тока, протекающим через него за период частоты сети Iср;
- •Максимальным значением напряжения, которое прикладывается к нему как в прямом, так и обратном направлении, когда вентиль закрыт, и которое этот вентиль должен выдержать Uобр max.
- •1) Создает необходимое выпрямительное напряжение Udм, что обеспечивается выбором соответствующего коэффициента трансформации;
- •2) Электрически отделяет цепь выпрямленного тока от сети переменного тока.
- •Регулятор угла α на выпрямителе, исключающий длительную работу последнего при повышенных значениях этого угла, что ведет к увеличению потребления реактивной мощности из сети;
- •Регулятор баланса токов полуцепей, предназначенный для снижения до минимума тока в земле.
- •11.4. Энергетические характеристики преобразователей
- •11.6. Технико-экономические показатели электропередач постоянного тока
- •11.7. Управляемые (гибкие) линии переменного тока
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Силовая электроника
- •12.1. Введение
- •6.2. Силовые электронные ключи
- •На стороне переменного тока;
- •На стороне постоянного тока;
- •Непосредственным управлением ключевыми элементами схемы.
- •Преобразователи с промежуточным звеном постоянного тока (непрямые преобразователи);
- •Преобразователи с непосредственной связью питающей сети и цепей нагрузки, которые в литературе иногда называются преобразователями с неявно выраженным звеном постоянного тока.
- •Преобразователи с прямой передачей энергии в нагрузку;
- •Преобразователи с накоплением энергии в промежуточных элементах схемы с последующей передачей в нагрузку. Функции таких накопителей обычно выполняют индуктивные накопители (реакторы).
- •12.4. Применение силовой электроники в электроэнергетике
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Релейная защита
- •13.1. Назначение релейной зашиты. Требования, предъявляемые к релейной защите
- •13.2. Структурная схема рз, подключение рз к защищаемому объекту
- •13.3. Токовые защиты
- •15.4. Дистанционная защита
- •15.5. Продольная дифференциальная токовая защита
- •15.6. Поперечная дифференциальная токовая защита
- •15.7. Направленная защита с высокочастотной блокировкой
- •15.8. Дифференциально-фазная защита
- •15.9. Комплексы релейной защиты
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Электротехнические материалы
- •14.1. Общие положения
- •14.2. Проводниковые материалы
- •14.3. Электроизоляционные материалы
- •14.4. Магнитные материалы
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Техника высоких напряжений (твн)
- •15.1. Предмет техники высоких напряжений (твн)
- •15.2. Механизм нарушения электрической изоляции
- •15.3. Характеристика отдельных видов изоляции
- •15.3.1. Воздушная изоляция
- •15.3.2. Назначение и типы изоляторов
- •15.3.3. Внутренняя изоляция
- •15.4. Электрические воздействия на электрическую изоляцию
- •15.4.1. Грозовые перенапряжения и их ограничение
- •15.4.2, Коммутационные перенапряжения и их ограничение
- •15.5. Испытания изоляции электрооборудования
- •15.5.1. Испытания оборудования в процессе изготовления
- •15.5.2. Профилактические испытания изоляции в эксплуатации
- •15.5.3. Испытательное оборудование
- •15.6. Перспективные направления развития техники высоких напряжений
- •15.6.1. Особенности проектирования изоляции оборудования постоянного тока
- •15.6.2. Особенности проектирования изоляции оборудования ультравысокого напряжения
- •Контрольные вопросы
- •Литература для самостоятельного изучения:
- •Сверхпроводимость
- •16.1. Общие сведения
- •16.2. Основные виды сверхпроводникового (сп) оборудования Введение
- •16.2.1. Кабельные линии электропередачи
- •16.2.2. Трансформаторы
- •16.2.3. Ограничители токов кз
- •16.2.4. Индуктивные и кинетические накопители энергии
- •16.2.5. Электрические машины
- •16.3. Ситуация с освоением сп-техники в электроэнергетике России
- •Контрольные вопросы
- •Литература
- •Гидроэнергетика и другие возобновляемые источники энергии
- •17.1. Гидроэнергетические ресурсы
- •Напоров — гидравлические в водоводах, бьефах, на неиспользуемых участках водотоков;
- •Расходов — испарение из водохранилищ, фильтрацию, холостые сбросы и т.П.;
- •Энергии в оборудовании.
- •17.4. Регулирование стока реки водохранилищем
- •17.5. Гидроэлектростанции и их энергетическое оборудование
- •Гаэс — в режимах генератора, электродвигателя, синхронного компенсатора и вращающегося резерва.
- •17.6. Мощность гэс и выработка энергии
- •17.7. Гидротехнические сооружения гэс
- •17.8. Гидроаккумулирующие электростанции
- •17.9. Солнечная энергетика
- •По виду преобразования солнечной энергии в другие виды энергии — тепло или электричество;
- •По концентрированию энергии — с концентраторами и без концентраторов;
- •По технической сложности — простые (нагрев воды, сушилки, нагревательные печи, опреснители и т.П.) и сложные.
- •17.10. Ветроэнергетика
- •По мощности — малые (до 10 кВт), средние (от 10 до 100 кВт), крупные (от 100 до 1000 кВт), сверхкрупные (более 1000 кВт);
- •По числу лопастей рабочего колеса — одно-, двух-, трех- и многолопастные;
- •По отношению рабочего колеса к направлению воздушного потока — с горизонтальной осью вращения, параллельной (рис. 17.16) или перпендикулярной вектору скорости (ротор Дарье) (рис. 17.17).
- •17.11. Геотермальная энергетика
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Приложение 1
- •Приложение 2
- •Словарь основных терминов
5.6. Режим нейтрали электрических сетей
Электрические сети 380/220 В выполняются четырехпроводными, так как большая часть ЭП (все бытовые приборы, включая электрическое освещение) — однофазные и включаются между фазным и нулевым проводниками. Поэтому в режиме однофазного короткого замыкания (на землю) при изолированном от земли нейтральном проводе человек, коснувшийся проводника одной из неповрежденных фаз, попал бы под междуфазное напряжение 380 В, которое больше условно принятого допустимым 250 В. В связи с указанным данные сети осуществляются с глухим заземлением нейтрали трансформаторов на стороне 380/220 В (в ТП 6—10/0,38 кВ). Это мероприятие исключает в описанном выше режиме попадание человека под напряжение более фазного 220 В. При таком решении образуются значительные токи однофазных замыканий на землю, что обеспечивает быстродействующее отключение проводника поврежденной фазы перегоранием плавкой вставки предохранителя или автоматическим выключателем (АВ), имеющимся на распределительном щите 380/220 В ТП и включенным в цепи отходящих линий.
Следует иметь в виду, что электрические сети 660/380 В часто выполняются трехпроводными, так как к ним подключаются только крупные трехфазные ЭП (двигатели, термические установки).
Электрические сети 6—10 кВ выполняются трехпроводными, так как к ним подключаются в основном трехфазные трансформаторы данных напряжений (ТП 6—10/0,38 кВ), а также весьма крупные трехфазные двигатели. Фазные проводники данных сетей, особенно при кабельном исполнении, обладают значительной емкостью по отношению к земле. Последнее приводит к тому, что при коротком замыкании одной из фаз на землю образуются контуры протекания токов короткого замыкания через индуктивности обмоток трансформаторов и линий, а также через емкостные проводимости всех фаз и землю (рис. 12.7). Значения этих токов могут достигать десятков ампер и быть опасными для нагрева изоляции токоведущих проводников. Помимо этого при последовательно «включенных» индуктивностях и емкостях в рассматриваемом контуре протекания тока может образовываться резонанс напряжений с последующими пробоями изоляции в иных точках данной сети. Считается необходимым ограничивать токи данных замыканий значениями 30 А при номинальном напряжении 6 кВ, 25 А — при 10 кВ, 20 А — при 20 кВ и 15 А — при 35 кВ. Ограничение токов однофазных замыканий достигается включением в нейтраль сети 6—10 кВ дугогасящего реактора ДР, индуктивность которого равна или несколько больше емкости фаз сети, подключенной к шинам указанных напряжений ИП. На рис. 5.8 представлена принципиальная схема включения такого реактора.
В зависимости от схемы и от конкретных условий эксплуатации допускается кратковременная работа сети (2—4 ч) при токах однофазных замыканий на землю, меньших указанных выше. При петлевых схемах сетей 6—10 кВ это время может быть использовано для оперативной работы с целью уменьшения времени перерыва электроснабжения ПЭ (см. рис. 5.6).
12.7. Конструкции линий, подстанций и их основного электрооборудования
В этом параграфе не излагаются подробные сведения о конструктивном исполнении и комплексах электрооборудования ИП СЭС, входящих в состав ЭЭС и описываемых в лекции 7 (ТЭЦ, ПС 35—220 кВ и т.п.). Здесь уделяется внимание специфике и современным тенденциям конструктивных решений и применяемого основного электрооборудования линий и ПС СЭС.
Линии СЭС. Линии глубоких вводов 110—220 кВ, передающие десятки и сотни мегаватт в центральные районы крупных городов, следует осуществлять подземными кабельными линиями. Такая конструкция этих линий экономически оправдана в связи с высокой стоимостью отчуждаемой территории жилых районов с учетом стоимости инженерного оборудования (транспорт, водо- и газопроводы и др.), безопасностью для населения, а также по архитектурным технико-эстетическим соображениям. Аналогичное применение кабелей 110—500 кВ наблюдается и при электроснабжении крупных промышленных предприятий, по историческим причинам оказавшихся в глубине территории города; известны такие решения при питании крупных подземных подстанций метрополитена и прилегающих к ним районов. До последнего времени описываемые линии выполнялись маслонаполненными кабелями низкого давления. В современный и перспективный периоды следует применять кабели с синтетической изоляцией(«сшитый» полиэтилен).
Линии 6—20 кВ в сельских районах и населенных пунктах городского и коттеджного типа с застройкой зданиями до трех этажей обычно воздушные. Это связано со значительно меньшей стоимостью ВЛ по сравнению с кабельными. В настоящее время имеется возможность существенного повышения надежности воздушных линий данных напряжений и удешевления прокладки их трасс при применении так называемых самонесущих изолированных проводов (СИП).
На территориях промышленных предприятий и городов линии 6—20 кВ следует выполнять кабелями.
В жилых районах городов обычно применяется прокладка кабелей в траншеях (в грунте) (рис. 5.9, а), а также в асбоцементных трубах или железобетонных блоках при пересечениях с улицами, бульварами и т.п. При прокладке 20 кабелей и более применяются специальные туннели (рис. 5.9, б).
На промышленных предприятиях, где наблюдается значительная плотность использования территории, а также возможны химическое загрязнение грунта, попадание на грунт расплавленных металлов, применяются конструктивные замены подземных кабельных линий надземными их прокладками в галереях (рис. 5.10).
Внутрицеховая прокладка кабеля выполняется в каналах (рис. 5.10, а) полов цехов, а также магистральными распределительными шинопроводами. Последние представляют собой алюминиевые шины, изолированные от металлических коробов, прикрепляемых к строительным конструкциям цеха (рис. 5.11). Данный тип внутрицеховой распределительной сети заслуженно получил широкое распространение как дающий широкие возможности различного расположения ЭП и его подключений, а также обеспечивающий высокую надежность внутрицеховых электросетей.
Понижающие подстанции СЭС.
Подстанции 35—220/6—10 кВ могут выполняться как с открытыми распределительными устройствами (РУ) высшего напряжения, располагающимися на территории, прилегающей к зданию, в котором размещаются РУ 6—20 кВ, диспетчерский пункт и др., так и с закрытыми РУ всех номинальных напряжений. Отмечается особая актуальность всемерной экономия площадей, занимаемых ГПП и ПГВ. Данное условие наиболее полно реализуется при осуществлении указанных ПС с РУ 35—220 кВ из герметичных комплектных ячеек с элегазовой изоляцией (КРУЭ) и с закрытой установкой трансформаторов 35—220/6—10 кВ с принудительным охлаждением.
Подстанция 110 кВ указанного конструктивного выполнения с трансформаторами мощностью 2x63 MB · А занимает площадь не более 0,5—0,6 га, а ПС 220/110/10 кВ с автотрансформаторами мощностью 2x250 MB · А — в пределах 0,8—1 га. Аналогичные по установленной мощности трансформаторов ПС с открытыми распределительными устройствами высших напряжений и открытой установкой трансформаторов потребовали бы в 3—4 раза большей территории. Помимо указанного при применении КРУЭ обеспечивается экологическая безопасность для эксплуатационного персонала ввиду экранирования электрических и магнитных полей металлическими кожухами КРУЭ.
Сооружение закрытых ПС 35—220 кВ с электрооборудованием в виде воздушных или масляных выключателей, опорных разъединителей, открытых шин и т.п. приводит к увеличению объемов здания — сравнительно с применением КРУЭ — в 3,5—4 раза.
Современной и перспективной тенденцией является осуществление распределительных устройств 6—10 кВ ГПП и ПГВ с применением вакуумных или элегазовых выключателей, обладающих меньшими габаритами по сравнению с малообъемными масляными выключателями, а также имеющих большие предельные токи отключаемых коротких замыканий (до 40—50 кА).
Трансформаторные подстанции 6—20/0,38—0,66 кВ любой технологической области электроснабжения содержат вводное устройство 6—20 кВ, один или два трансформатора, распределительный щит 380/220—660/380 В, аппараты защиты трансформаторов и линий вторичного напряжения от токов коротких замыканий, а также АВР в тех случаях, когда это требуется.
Трансформаторные подстанции выполняются как отдельно стоящими от производственных и жилых зданий, так и встроенными в здания.
В СЭС промышленных предприятий расположение ТП вне зданий достаточно часто применялось в прошедший период, но и в настоящее время это необходимо по условиям охраны труда в цехах, где продукты производства и выбросы в воздух взрыво- и пожароопасны.
В настоящее время в большинстве случаев применяются внутрицеховые ТП 6—20 кВ индустриального изготовления, представляющие собой комплекс конструктивных элементов и всего необходимого электрооборудования; комплектные трансформаторные пункты (КТП) выпускаются с трансформаторами типа ТМ мощностью от 250 до 2500 кВ · А (рис. 5.12).
Совместная установка двух КТП позволяет образовывать двухтрансформаторную ТП. Обычно КТП устанавливаются на полу цеха. Однако в некоторых случаях КТП могут устанавливаться на специальных конструкциях выше основного технологического оборудования (4—5 м), что способствует более полному использованию площади цеха.
Отдельно стоящие ТП 6—20 кВ электросетей городских жилых районов размещаются внутри жилых кварталов. Современным направлением является полностью индустриальное (в конструктивной и электротехнической частях) изготовление отдельностоящих городских ТП с применением синтетической изоляции, герметических трансформаторов (ТМГ), элегазовых выключателей нагрузки и с помещением всего электрооборудования 6-20 кВ в герметическии кожух, заполненный элегазом (рис. 5.13).
Рис. 5.13. Городская малогабаритная блочная трансформаторная подстанция 6—20/0,4 кВ с трансформаторами ТМГ 2x630 кВ • А:
а -принципиальная электрическая схема; б - план размещения электрооборудования; ВИ - выключатели нагрузки; ЭВН —-элегазовые выключатели нагрузки; МТ - максимально-токовые реле; ПН - плавкие предохранители; КТ – контакторы.
Вместе с тем в многоэтажных (более 30-35 этажей), многообъемных зданиях оправдано размещение ТП внутри них, но с установкой «сухих» трансформаторов.
Основным видом ТП 6—20/0,38 кВ электроснабжения сельскохозяйственных районов являлся «мачтовый тип», когда трансформатор и все иное электрооборудование размещается на специальной деревянной П- или АП-образной опоре. Вместе с тем применяются отдельностоящие ПС с кирпичной строительной частью. Современным направлением развития сельских ТП является применение специализированных индустриально изготовляемых комплектных ПС (рис. 5.14).
Распределительные устройства распределительных пунктов состоят из ячеек выключателей вводов питающих и отходящих линий, секционного выключателя, измерительных трансформаторов и др. Ранее в РП применялись малообъемные масляные выключатели в сочетании с комплектными ячейками одностороннего обслуживания (КСО). Современные тенденции заключаются в применении вакуумных и элегазовых выключателей 6—20 кВ, а также конструктивно усовершенствованных и автоматизированных комплектных ячеек, что сокращает площади РП и повышает надежность электроснабжения.