
- •Предисловие авторов
- •Теоретические основы электротехники
- •1.1. Предмет, основные разделы и понятия теоретических основ электротехники
- •1.2. Электрические цепи: элементы, схемы, законы, классификация
- •1.3. Электромагнитные процессы и режимы электрических цепей. Режим синусоидальных токов
- •1.4. Мощности в цепях синусоидального тока
- •1.5. Трехфазные цепи: фазные и линейные токи, напряжения, мощности
- •1.6. Электрические цепи несинусоидальных токов
- •1.7. Высшие гармоники в трехфазных цепях
- •1.8. Мощности в цепях несинусоидальных токов
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Краткая история электроэнергетики. Электроэнергетические системы
- •2.1. Введение
- •А) различием в моментах появления пика нагрузки обеих энергосистем; это различие может сильно изменяться в различные периоды года;
- •Б) различием в моментах появления недельного, месячного или годового максимума.
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Режимы работы ээс и управление ими
- •Для сетей 35 кВ — при трехфазном коротком замыкании;
- •Для сетей 110—1150 кВ — при двухфазном коротком замыкании на землю.
- •3.4. Средства управления режимами и их функции
- •3.5. Регулирование напряжения в электрических сетях
- •3.6. Регулирование частоты и мощности в энергосистемах
- •Первичное регулирование частоты, обеспечивающее стабильность частоты, т.Е. Удержание отклонений частоты в допустимых рамках при нарушении общего баланса мощности в любой части энергосистемы;
- •Вторичное регулирование, обеспечивающее восстановление нормального уровня частоты и плановых режимов обмена мощностью между частями энергосистемы или регионами;
- •Централизованное регулирование частоты в сочетании с региональным регулированием мощности электростанций;
- •Децентрализованное комплексное регулирование частоты и перетоков мощности.
- •Управляющие вычислительные центры (увц) в цду еэс, оду оэс, цдс ээс, диспетчерские пункты (дп) предприятий электрических сетей (пэс);
- •Автоматизированные системы управления технологическими процессами (асутп) электростанций, энергоблоков электростанций и подстанций;
- •Централизованные и локальные системы автоматического регулирования и управления.
- •3.11. Структура системы противоаварийной автоматики
- •Литература для самостоятельного изучения
- •Электрические схемы электростанций и подстанций
- •4.1. Общие сведения
- •4.2. Основные требования, предъявляемые к схемам распределительных устройств электроустановок
- •4.5. Схемы, применяемые на высшем и среднем напряжениях
- •4.7. Структурные схемы электрических станций и подстанций
- •4.8. Электроснабжение собственных нужд электростанций и подстанций
- •4.9. Примеры исполнения электрических схем электростанций и подстанций
- •Контрольные вопросы.
- •Литература для самостоятельного изучения.
- •Глава пятая системы электроснабжения
- •5.1. Общая характеристика систем электроснабжения
- •5.2. Основные группы потребителей электроэнергии
- •5.3. Основные условия и задачи формирования систем электроснабжения
- •5.4. Номинальные напряжения электроустановок
- •5.5. Основные типы схем электрических сетей
- •5.6. Режим нейтрали электрических сетей
- •12.7. Конструкции линий, подстанций и их основного электрооборудования
- •5.8. Основные вопросы проектирования и расчетов сэс
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Качество электроэнергии в системах электроснабжения
- •6.1. Качество электрической энергии
- •6.2. Показатели качества электроэнергии
- •6.3. Влияние качества электроэнергии на функционирование технических средств
- •6.4. Технические средства контроля качества электроэнергии
- •6.5. Обеспечение качества электроэнергии
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Электрические машины электростанций
- •7.1. Конструкции синхронных генераторов
- •7.2. Принцип действия синхронных генераторов
- •7.3. Типы турбо- и гидрогенераторов по мощностям и способам охлаждения
- •7.3.1. Турбогенераторы
- •7.3.2. Гидрогенераторы
- •7.4. Системы возбуждения генераторов
- •7.5. Совершенствование изоляции обмоток синхронных генераторов
- •3.6. Характеристики генераторов, работающих на автономную сеть
- •3.7. Включение генераторов на параллельную работу с сетью постоянного напряжения и постоянной частоты
- •7.8. Угловая характеристика. Статическая устойчивость работы генераторов при работе параллельно с сетью бесконечной мощности. V-образные характеристики генераторов
- •7.9. Синхронные двигатели
- •7.10. Синхронные компенсаторы
- •7.11. Синхронные машины продольно-поперечного возбуждения. Асинхронизированные синхронные машины
- •7.12. Асинхронные двигатели
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Трансформаторное оборудование
- •8.1. Общие вопросы
- •4.2. Принцип работы и устройство трансформатора
- •8.3. Автотрансформаторы
- •8.4. Конструкция трансформатора
- •4.5. Изоляция в трансформаторах
- •4.6. Потери и коэффициент полезного действия трансформатора
- •4.7. Структура условного обозначения типа трансформатора
- •А) масляные трансформаторы:
- •Б) трансформаторы с жидким негорючим диэлектриком:
- •В) сухие трансформаторы:
- •8.8. Измерительные трансформаторы
- •4.9. Современное состояние, тенденции развития трансформаторостроения
- •8.10. Реакторы
- •Контрольные вопросы:
- •Литература для самостоятельного изучения
- •Коммутационные и защитные аппараты высокого напряжения. Силовые конденсаторы
- •9.2. Условия работы аппаратов высокого напряжения и общие требования, предъявляемые к ним
- •9.3. Выключатели высокого напряжения
- •9.3.1. Воздушные выключатели
- •9.3.2. Элегазовые выключатели
- •9.3.3. Масляные выключатели
- •Баковые (многообъемные) масляные выключатели, в которых масло используется для гашения и изоляции токоведущих частей от заземленного бака;
- •Маломасляные (малообъемные) масляные выключатели, в которых масло используется только для гашения дуги и изоляции между разомкнутыми контактами одного полюса.
- •Интенсивное дутье газопаровой смеси в зоне дуги, особенно в момент тока, близкого к нулю;
- •Максимально возможное высокое давление газопаровой смеси в области дуги в конце полупериода тока.
- •9.3.4. Электромагнитные выключатели
- •9.3.5. Вакуумные выключатели
- •9.4. Разъединители, отделители, короткозамыкатели
- •9.5. Комплектные распределительные устройства
- •9.5.1. Комплектные ру 10-35 кВ
- •9.5.2. Герметизированные комплектные ру на основе элегаза (круэ)
- •9.6. Защитные и токоограничивающие аппараты
- •9.7. Силовые конденсаторы
- •9.7.1. Основные характеристики силовых конденсаторов
- •9.7.2. Электротехнические материалы, применяемые в силовых конденсаторах
- •9.7.3. Конструкции и области применения силовых конденсаторов
- •9.8. Перспективы развития коммутационных аппаратов в мире
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Технические средства передачи электроэнергии
- •10.1.Основные понятия и определения
- •Линии открытого типа (воздушные);
- •Линии закрытого типа (кабельные).
- •10.2.Общая характеристика воздушной линии и условий ее работы
- •10.3.Провода и грозозащитные тросы
- •10.4. Классификация опор
- •Одноцепные, которые применяются при сооружении вл любых номинальных напряжений;
- •Двухцепные, которые в России применяются для вл 35—330 кВ, а за рубежом и на линиях 380—500 кВ;
- •10.5. Изоляторы и линейная арматура
- •Стеклянной или фарфоровой изолирующей детали в виде тела вращения с ребрами на нижней поверхности и с внутренней полостью конической или цилиндрической формы;
- •Шапки из ковкого чугуна, в верхней части которой имеется сферическая полость (гнездо), предназначенная для шарнирного сопряжения с другим изолятором;
- •Стержня, нижняя головка которого имеет сферическую поверхность, сопрягаемую с соответствующей поверхностью в гнезде шапки.
- •10.6. Геометрические характеристики
- •Ее токоведущих элементов (проводов) и заземленных частей (траверс и стоек опоры);
- •Проводов и грозозащитных тросов, если последние предусмотрены конструкцией;
- •Проводов в нижней точке их провисания в пролете относительно поверхности земли.
- •10.7. Общая характеристика кабельных линий
- •10.8. Кабельные линии низкого и среднего напряжений
- •10.9. Кабельные линии высокого напряжения
- •10.10. Основные сведения о сооружении кабельных линий
- •10.11. Электрические характеристики линий электропередачи переменного тока
- •10.11.1. Одноцепная транспонированная воздушная линия с нерасщепленной фазой
- •Погонное индуктивное сопротивление
- •Погонная емкостная проводимость
- •Погонная активная проводимость
- •Волновые параметры и натуральная мощность
- •10.11.2. Одноцепная транспонированная воздушная линия с расщепленной фазой
- •Погонное активное сопротивление
- •Погонные активные сопротивления и диаметры сталеалюминиевых проводов облегченного исполнения (по гост 839-80)
- •Волновые параметры и натуральная мощность
- •10.11.3. Двухцепная транспонированная воздушная линия
- •10.11.4. Кабельные линии
- •Погонное активное сопротивление
- •Погонные реактивные параметры
- •Погонная активная проводимость
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Электропередачи и вставки постоянного тока. Управляемые (гибкие) линии переменного тока
- •11.1. Возможные области применения электропередач и вставок постоянного тока
- •11.3. Схемы электропередач и вставок постоянного тока
- •Средним значением тока, протекающим через него за период частоты сети Iср;
- •Максимальным значением напряжения, которое прикладывается к нему как в прямом, так и обратном направлении, когда вентиль закрыт, и которое этот вентиль должен выдержать Uобр max.
- •1) Создает необходимое выпрямительное напряжение Udм, что обеспечивается выбором соответствующего коэффициента трансформации;
- •2) Электрически отделяет цепь выпрямленного тока от сети переменного тока.
- •Регулятор угла α на выпрямителе, исключающий длительную работу последнего при повышенных значениях этого угла, что ведет к увеличению потребления реактивной мощности из сети;
- •Регулятор баланса токов полуцепей, предназначенный для снижения до минимума тока в земле.
- •11.4. Энергетические характеристики преобразователей
- •11.6. Технико-экономические показатели электропередач постоянного тока
- •11.7. Управляемые (гибкие) линии переменного тока
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Силовая электроника
- •12.1. Введение
- •6.2. Силовые электронные ключи
- •На стороне переменного тока;
- •На стороне постоянного тока;
- •Непосредственным управлением ключевыми элементами схемы.
- •Преобразователи с промежуточным звеном постоянного тока (непрямые преобразователи);
- •Преобразователи с непосредственной связью питающей сети и цепей нагрузки, которые в литературе иногда называются преобразователями с неявно выраженным звеном постоянного тока.
- •Преобразователи с прямой передачей энергии в нагрузку;
- •Преобразователи с накоплением энергии в промежуточных элементах схемы с последующей передачей в нагрузку. Функции таких накопителей обычно выполняют индуктивные накопители (реакторы).
- •12.4. Применение силовой электроники в электроэнергетике
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Релейная защита
- •13.1. Назначение релейной зашиты. Требования, предъявляемые к релейной защите
- •13.2. Структурная схема рз, подключение рз к защищаемому объекту
- •13.3. Токовые защиты
- •15.4. Дистанционная защита
- •15.5. Продольная дифференциальная токовая защита
- •15.6. Поперечная дифференциальная токовая защита
- •15.7. Направленная защита с высокочастотной блокировкой
- •15.8. Дифференциально-фазная защита
- •15.9. Комплексы релейной защиты
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Электротехнические материалы
- •14.1. Общие положения
- •14.2. Проводниковые материалы
- •14.3. Электроизоляционные материалы
- •14.4. Магнитные материалы
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Техника высоких напряжений (твн)
- •15.1. Предмет техники высоких напряжений (твн)
- •15.2. Механизм нарушения электрической изоляции
- •15.3. Характеристика отдельных видов изоляции
- •15.3.1. Воздушная изоляция
- •15.3.2. Назначение и типы изоляторов
- •15.3.3. Внутренняя изоляция
- •15.4. Электрические воздействия на электрическую изоляцию
- •15.4.1. Грозовые перенапряжения и их ограничение
- •15.4.2, Коммутационные перенапряжения и их ограничение
- •15.5. Испытания изоляции электрооборудования
- •15.5.1. Испытания оборудования в процессе изготовления
- •15.5.2. Профилактические испытания изоляции в эксплуатации
- •15.5.3. Испытательное оборудование
- •15.6. Перспективные направления развития техники высоких напряжений
- •15.6.1. Особенности проектирования изоляции оборудования постоянного тока
- •15.6.2. Особенности проектирования изоляции оборудования ультравысокого напряжения
- •Контрольные вопросы
- •Литература для самостоятельного изучения:
- •Сверхпроводимость
- •16.1. Общие сведения
- •16.2. Основные виды сверхпроводникового (сп) оборудования Введение
- •16.2.1. Кабельные линии электропередачи
- •16.2.2. Трансформаторы
- •16.2.3. Ограничители токов кз
- •16.2.4. Индуктивные и кинетические накопители энергии
- •16.2.5. Электрические машины
- •16.3. Ситуация с освоением сп-техники в электроэнергетике России
- •Контрольные вопросы
- •Литература
- •Гидроэнергетика и другие возобновляемые источники энергии
- •17.1. Гидроэнергетические ресурсы
- •Напоров — гидравлические в водоводах, бьефах, на неиспользуемых участках водотоков;
- •Расходов — испарение из водохранилищ, фильтрацию, холостые сбросы и т.П.;
- •Энергии в оборудовании.
- •17.4. Регулирование стока реки водохранилищем
- •17.5. Гидроэлектростанции и их энергетическое оборудование
- •Гаэс — в режимах генератора, электродвигателя, синхронного компенсатора и вращающегося резерва.
- •17.6. Мощность гэс и выработка энергии
- •17.7. Гидротехнические сооружения гэс
- •17.8. Гидроаккумулирующие электростанции
- •17.9. Солнечная энергетика
- •По виду преобразования солнечной энергии в другие виды энергии — тепло или электричество;
- •По концентрированию энергии — с концентраторами и без концентраторов;
- •По технической сложности — простые (нагрев воды, сушилки, нагревательные печи, опреснители и т.П.) и сложные.
- •17.10. Ветроэнергетика
- •По мощности — малые (до 10 кВт), средние (от 10 до 100 кВт), крупные (от 100 до 1000 кВт), сверхкрупные (более 1000 кВт);
- •По числу лопастей рабочего колеса — одно-, двух-, трех- и многолопастные;
- •По отношению рабочего колеса к направлению воздушного потока — с горизонтальной осью вращения, параллельной (рис. 17.16) или перпендикулярной вектору скорости (ротор Дарье) (рис. 17.17).
- •17.11. Геотермальная энергетика
- •Контрольные вопросы
- •Литература для самостоятельного изучения
- •Приложение 1
- •Приложение 2
- •Словарь основных терминов
4.9. Примеры исполнения электрических схем электростанций и подстанций
В качестве примера на рис. 4.24 представлена электрическая схема ТЭЦ-22 ОАО «Мосэнерго». Данная схема относится к схемам блочного типа. Причем для выдачи мощности со станции в основном используется схема «генератор — трансформатор — линия». Вся вырабатываемая мощность выдается на двух напряжениях 110 и 220 кВ, а нагрузка на генераторном напряжении полностью отсутствует. Турбогенераторы Г1 и Г2 типа ТВ-60-2 мощностью 60 МВт работают на отдельные линии электропередачи напряжением 110 кВ; турбогенераторы ГЗ и Г4, Г5 и Г6 типа ТВФ-63-2УЗ мощностью 63 МВт работают по схеме объединенных энергоблоков с выдачей мощности каждого энергоблока по линии электропередачи напряжением 110 кВ. После блочных трансформаторов турбогенераторов Г2 и ГЗ через перемычку из двух выключателей получает питание резервный трансформатор собственных нужд РТСН1, аналогично после блочных трансформаторов генераторов Г4 и Г5 подключается и резервный трансформатор собственных нужд РТСН2. Резервный трансформатор собственных нужд РТСНЗ подключен в развилку из двух выключателей между линией объединенного энергоблока, генераторов ГЗ и Г4 и блочного трансформатора турбогенератора Г6. Турбогенераторы Г7 типа ТВФ-120 и Г8 типа ТЗФА-110 также работают по схеме объединенного блока на линию электропередачи напряжением 220 кВ. Турбогенераторы Г9, Г10 и Г11 типа ТВВ-320-2УЗ мощностью 320 МВт работают по схеме «генератор — трансформатор — линия» и выдают мощность на напряжении 220 кВ на подстанции энергосистемы.
На ТЭЦ-22 установлен асинхронизированный турбогенератор Г8 мощностью 110 МВт, который служит для компенсации реактивной мощности на шинах ТЭЦ. Проблема глубокого потребления реактивной мощности синхронными генераторами ТЭС может быть решена путем установки синхронных генераторов, имеющих так называемое продольно-поперечное возбуждение. Такие генераторы имеют две обмотки возбуждения на роторе, магнитные оси которых перпендикулярны. Синхронные машины такого исполнения называют асинхронизированными, так как ротор такой двухполюсной машины может вращаться с частотой отличной от 3000 об/мин при частоте сети 50 Гц, если в обмотки возбуждения подать ток частоты скольжения. При работе асинхронизированных машин в режиме синхронного компенсатора потребляемая реактивная мощность может быть увеличена вплоть до номинального значения за счет обратной полярности напряжения возбуждения в одной из обмоток. При этом асинхронизированная машина удерживается в синхронизме за счет специального регулирования тока возбуждения во второй обмотке.
На рис. 4.25 представлена электрическая схема ТЭЦ-26 ОАО «Мосэнерго». Данная схема относится к схемам смешанного типа. Два турбогенератора Г1 и Г2 мощностью по 100 МВт присоединены к ГРУ 10 кВ.
Рис. 4.24. Электрическая схема ТЭЦ-22 ОАО «Мосэнерго»:
Г1!, Г2 — турбогенераторы ТВ-60-2; ГЗ, Г4, Г5, Г6 — турбогенераторы ТВФ-63-2УЗ; Г7— турбогенератор ТВФ-120-2УЗ; Г8 — асинхронизированный турбогенератор ТЗФА-110; Г9, Г10, Г11 — турбогенераторы ТВВ-320-2УЗ; РТСН1, РТСН2, РТСНЗ -резервные трансформаторы собственных нужд; ТСН— рабочие трансформаторы собственных нужд.
Рис. 4.25. Электрическая схема ТЭЦ-26 ОАО «Мосэнерго»:
от которого получают питание местные потребители. ГРУ выполнено по схеме две системы шин, одна из которых секционирована и является рабочей, а другая система шин — резервной. Для ограничения токов КЗ используются секционный и линейные токоограничивающие реакторы, к сборкам последних подключена кабельная сеть местной нагрузки.
ГРУ двумя трансформаторами связано с ОРУ 220 кВ, которое выполнено по схеме две системы сборных шин с обходной системой шин. Одна система сборных шин секционирована выключателем, другая — двумя разъединителями. Обходная система шин разделена на две части разъединителем. В ОРУ 220 кВ установлены два выключателя с совмещенными функциями ШСВ и ОВ. Кроме того к ОРУ 220 кВ через блочные трансформаторы подключены два генератора (ГЗ и Г4) мощностью 320 МВт.
Для выдачи остальной части мощности ТЭЦ в энергетическую систему три генератора (Г4, Г5 и Г6) мощностью 320 МВт через блочные трансформаторы подключены к ОРУ 500 кВ, выполненному по схеме 3/2 (полуторной). Связь между ОРУ 220 и 500 кВ осуществляется через автотрансформатор, к обмотке низшего напряжения которого подключен резервный трансформатор с.н. Два других резервных трансформатора с.н. подключены к ГРУ 10 кВ.
На рис. 4.26 представлена
электрическая схема Балаковской АЭС.
На электростанции установлено четыре
энергоблока с реакторами типа ВВЭР-1000
и турбогенераторами типа ТВВ-1000-4УЗ.
Структурная схема энергоблока включает
в себя: турбогенератор, генераторный
выключатель нагрузки, два рабочих
трансформатора с.н. и два блочных
трансформатора мощностью 630 MB
А
каждый. Выдача мощности АЭС осуществляется
на двух повышенных напряжениях 220 и 500
кВ.
ОРУ 500 кВ выполнено по схеме "4/3" (четыре выключателя на три присоединения) с чередованием присоединений. Блочные трансформаторы энергоблоков 1, 2 и 3 включены параллельно и подключены к ОРУ 500 кВ как одно присоединение. Для компенсации реактивной мощности установлено два компенсирующих реактора, один из которых подключен к шинам первой секции, а второй к одной из отходящих ЛЭП.
ОРУ 220 кВ выполнено по схеме две системы сборных шин с обходной системой шин ОШ. Два блочных трансформатора турбогенератора Г1 подключаются к ОРУ 220 кВ как два самостоятельных присоединения.
Связь между ОРУ 500 кВ и ОРУ 220 кВ осуществляется посредством автотрансформатора.
На АЭС установлено две группы (по два трансформатора) резервных трансформаторов с.н. Одна из групп трансформаторов подключена к ОРУ 220 кВ как самостоятельное присоединение, а вторая — через отдельный выключатель к ячейке 220 кВ автотрансформатора связи.
Рис. 4.26. Электрическая схема Балаковской АЭС.