Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
основы современной энергетики. том2.doc
Скачиваний:
20
Добавлен:
01.05.2025
Размер:
33.55 Mб
Скачать

17.5. Гидроэлектростанции и их энергетическое оборудование

Основным энергетическим оборудованием ГЭС являются гидротурбины и генераторы.

Гидравлической турбиной называется машина, преобразующая энергию движущейся воды в механическую энергию вращения ее рабочего колеса. Гидротурбины разделяют на два класса: активные и реактивные. Общий вид рабочих колес гидротурбин представлен на рис. 17.9.

Активные гидротурбины используют только кинетическую энергию потока. Наиболее распространенными активными гидротурбинами являются ковшовые (рис. 17.9, а).

Реактивные гидротурбины используют и потенциальную энергию. К реактивным гидротурбинам относятся: пропеллерные (рис. 17.9, б), поворотно-лопастные (рис. 17.9, в), диагональные (рис. 17.9, г), радиально-осевые (рис. 17.9, д).

Каждая система гидротурбины оптимально работает при определенном напоре.

Электрическая часть ГЭС и ГАЭС состоит из электрических машин (соединенных с гидромашинами), трансформаторов и распределительных устройств. Основным элементом электрической части являются электрические синхронные машины переменного тока, работающие на:

  • ГЭС — в режимах генератора, синхронного компенсатора и вращающегося резерва;

  • Гаэс — в режимах генератора, электродвигателя, синхронного компенсатора и вращающегося резерва.

Гидрогенераторы подразделяются на вертикальные и горизонтальные. Вертикальные синхронные генераторы ГЭС выполняются: подвесного типа (рис. 17.10, а), зонтичного типа с опорой на нижнюю крестовину (рис. 17.10, б) или зонтичного типа с опорой на крышку турбины (рис. 17.10, в).

17.6. Мощность гэс и выработка энергии

В энергосистеме ГЭС обычно используется для выработки электроэнергии, покрытия графика нагрузки, особенно его пиковой части, регулирования частоты электрического тока в системе, в качестве резерва и для выработки реактивной мощности в режиме синхронного компенсатора.

Режим работы ГЭС в энергосистеме зависит от расхода воды, напора, объема водохранилища, потребностей энергосистемы, ограничений по верхнему и нижнему бьефу.

Агрегаты ГЭС по техническим условиям могут быстро включаться, набирать нагрузку и останавливаться. Причем включение и выключение агрегатов, регулирование нагрузки могут происходить автоматически при изменении частоты электрического тока в энергосистеме. Для включения остановленного агрегата и набора полной нагрузки обычно требуется всего 1—2 мин.

Мощность на валу гидротурбины (кВт) определяется как

 

(17.7)

где Qт — расход воды через гидротурбину, м3/с; Нт — напор турбины, м; т — коэффициент полезного действия (КПД) турбины. Напор турбины равен:

 

(17.8)

где ВБ, НБ — отметки уровня воды соответственно в верхнем и нижнем бьефе, м; Нг — геометрический напор; h — потери напора в водоподводящем тракте, м.

Потери напора обычно составляют 2—5 % Нг. Значение КПД гидротурбины зависит от ее конструкции, размеров и режимов работы. Коэффициент полезного действия современных крупных гидротурбин может достигать 0,95.

Электрическая мощность гидроагрегата Na на выводах генератора

 

(17.9)

где ген — КПД гидрогенератора. Обычно КПД гидрогенератора равен 0,9—0,98.

Регулирование мощности агрегата ГЭС производится изменением расхода, проходящего через гидротурбину. Мощность ГЭС в i-й момент времени равна:

 

(17.10)

где Qгi, Hгi, гi — расход ГЭС, напор ГЭС и КПД ГЭС соответственно в i-й момент времени.

Выработка электроэнергии ГЭС (кВт · ч) за период времени Т (ч) определяется как

 

(17.11)

 

В качестве расчетного периода Т рассматриваются час, сутки, неделя, месяц, год.

Годовая выработка электроэнергии ГЭС не является постоянной величиной, а изменяется в зависимости от объема стока, поступающего в водохранилище, степени его регулирования и условий эксплуатации ГЭС. При годичном регулировании годовая выработка электроэнергии ГЭС, как правило, существенно колеблется в основном за счет энергоотдачи в паводковый период.

При многолетнем регулировании неравномерность выработки электроэнергии по годам бывает незначительной.

Среднемноголетняя выработка электроэнергии Э является важной характеристикой, используемой при определении технико-экономических показателей ГЭС.

Для оценки работы ГЭС в энергосистеме служит условное число часов использования установленной мощности в году Ту представляющее собой отношение:

 

(17.12)

где Nу — установленная мощность ГЭС; Эг — среднегодовая выработка.

Для остропиковых ГЭС Ту  2000 ч, а для ГЭС, работающих в полупиковом режиме, Ту возрастает до 4000 ч. Если ГЭС предназначается для базисной работы, то Ту составляет обычно 6000—6500 ч. Теоретическим пределом является Ту = 8760 ч.

Эксплуатационный персонал на ГЭС существенно меньше, чем на тепловой или атомной электростанции аналогичной мощности.

Себестоимость выработки электроэнергии на ГЭС обычно в 6—8 раз ниже, чем на ТЭС или АЭС.