Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
контр.р. по КГ-6с. 13г.1 вар..docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
172.42 Кб
Скачать

Контрольной работа«Компьютерная графика в машиностроении»

в 6 семестре 2012/2013 уч. года, гр. 351

1 вариант:

1. Системы координат и геометрические преобразования. Две взаимно перпендикулярные пересекающиеся прямые с заданным масштабом образуют декартову прямоугольную систему координат на плоскости. Точка пересечения O называется началом координат, прямые называются осями координат. Одну из осей называют осью OX, или осью абсцисс, другую - осью OY, или осью ординат. Эти оси также называют координатными осями. Три взаимно перпендикулярные пересекающиеся прямые с заданным масштабом образуют декартову прямоугольную систему координат в пространстве. Так же как и в случае плоскости, точка пересечения O называется началом координат, прямые называются осями координат. Одну из осей называют осью OX, или осью абсцисс, другую - осью OY, или осью ординат, третью - осью OZ, или осью аппликат. Отрезок на плоскости и в пространстве задается с помощью двух точек, указывающих его границы. Геометрическим вектором, или просто вектором в пространстве, будем называть отрезок, у которого указано, какая из его граничных точек является началом, а какая - концом (т.е. указано направление вектора). Начало вектора называют точкой его приложения. Вектор называется нулевым, если его начало и конец совпадают. Векторы называются коллинеарными, если они лежат на параллельных прямых. Векторы считаются равными, если они коллинеарны, имеют одинаковую длину и одинаковое направление. Таким образом, все векторы, получающиеся параллельным переносом из одного и того же вектора, равны мeжду собой. Любая точка на плоскости и в пространстве может рассматриваться как вектор, начало которого совпадает с началом координат (радиус-вектор а каждый вектор, перенесенный в начало координат, задает своим концом единственную точку пространства. Поэтому любой вектор может быть представлен совокупностью своих координат в декартовой системе.

Линейными операциями над векторами принято называть операции сложения векторов и операцию умножения вектора на число.

Векторы , и называются компланарными, если они лежат в одной плоскости.

пара линейно независимых векторов на плоскости (тройка линейно независимых векторов в пространстве) образуют базис, поскольку любой вектор может быть представлен в виде линейной комбинации этих векторов. Коэффициенты разложения вектора по базисным векторам называются координатами вектора в этом базисе. Если векторы базиса взаимно перпендикулярны и имеют единичную длину, то базис называется ортонормированным, а векторы базиса называются ортами. Таким образом, базис из единичных векторов, направленных вдоль осей декартовой системы координат, является ортонормированным.Скалярным произведением векторов и называется число, равное произведению длин этих векторов на косинус угла между ними. Будем обозначать скалярное произведение векторов символом . Тогда скалярное произведение можно выразить формулой

Поверхность в пространстве - это геометрическое место точек , удовлетворяющих уравнению вида

Прямая на плоскости и в пространстве является бесконечной в обе стороны. Лучом называется полупрямая, т.е. множество всех точек прямой, лежащих по одну сторону от заданной ее точки, называемой началом луча. Луч будем задавать в параметрическом виде, как это было описано в одном из предыдущих разделов. Пусть - направляющий вектор прямой, а - начальная точка. Тогда координаты точек луча будут определяться формулами

Помимо функций, заданных аналитически (т. е. с помощью элементарных функций, значения которых легко могут быть вычислены в любой точке области определения), на практике часто приходится иметь дело с таблично заданными функциями. В этом случае функция задается своими значениями на некотором дискретном множестве точек (узлов) из области определения. Если необходимо получить значение функции в какой-либо точке, не совпадающей с узлом, используют различные методы приближенного вычисления, которые основываются на некоторых априорных предположениях относительно этой функции. При этом сама процедура вычисления называется интерполяцией в случае, когда точка принадлежит заданной области, и экстраполяцией, если она лежит вне области.

В качестве предположений о характере дискретно заданной функции наиболее часто используемой и простой является то, что она кусочно- линейная, т. е. что в промежутках между узлами она ведет себя в соответствии с линейным законом. Тогда интерполяция называется линейной, и этот метод мы будем довольно часто применять в алгоритмах компьютерной граф Геометрические объекты на плоскости и в пространстве можно подвергать ряду различных преобразований. Наиболее употребительными в задачах компьютерной графики являются:

  • перемещение (параллельный перенос);

  • изменение размеров (масштабирование);

  • повороты вокруг некоторой точки на плоскости или некоторой оси в пространстве (вращение).

В дальнейшем мы часто будем отождествлять точки пространства с радиус-вектором, определяемым этой точкой.