
- •Общие сведения
- •Общие сведения
- •Глава 5. Железо и его сплавы
- •Общие сведения
- •1.2. Углеродистые стали
- •Общие сведения
- •Глава 13, Цветные металлы и сплавы
- •Общие сведения
- •Глава 14. Порошковые материалы
- •Общие сведения
- •Глава 15. Металлы и сплавы для работы при низких температурах
- •Общие сведения
- •Общие сведения
- •Общие сведения
- •Общие сведения
- •Общие сведения
- •Раздел I производство черных и цветных металлов.
- •Глава 1
- •1. Исходные материалы для доменного производства
- •2. Доменная печь
- •3. Доменный процесс
- •4 . Производство литейного чугуна
- •Глава 2
- •1. Кислородно-конвертерное произсодство стали
- •М артеновское производство стали
- •3. Производство стали в электропечах
- •4. Рафинирование стали в установках для переплава
- •5. Разливка стали
- •6. Внепечные способы рафинирования стали
- •Глава 3
- •1. Производство меди
- •2. Производство алюминия
- •3. Производство магния
- •4. Производство титана
- •Раздел II металловедение
- •Глава 1
- •1. Общие сведения
- •2. Кристаллическое строение металлов
- •3. Дефекты строения кристаллических тел
- •3.1. Точечные дефекты
- •3.2. Линейные дефекты
- •3.3. Теоретическая и фактическая прочность
- •3.4. Поверхностные дефекты
- •4. Кристаллизация металлов
- •4.1. Энергетические условия кристаллизации
- •4.2. Механизм процесса кристаллизации
- •4.3. Строение слитка спокойной стали
- •Глава 2
- •1. Свойства металлов и сплавов
- •2. Упругая и пластическая деформация
- •3. Хрупкое и вязкое разрушение
- •4. Факторы, определяющие характер разрушения
- •5. Наклеп, возврат и рекристаллизация
- •Глава 3
- •1. Общие сведения
- •2. Особенности испытаний при низких температурах
- •3. Статические испытания
- •4. Динамические испытания
- •5. Испытания долговечности металлов
- •5.1. Усталостные испытания
- •5.2. Испытания на ползучесть
- •6. Трещнностойкость металлов и коэффициент интенсивности напряжений
- •7. Испытания на вязкость разрушения
- •Глава 4
- •1. Общие сведения
- •2. Основные типы диаграмм состояния
- •2.1. Диаграмма состояния сплавов, образующих механические смеси из чистых компонентов
- •2.2. Диаграмма состояния сплавов с неограниченной растворимостью компонентов в твердом состоянии
- •2.3. Правило отрезков
- •2.4. Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии
- •2.5. Диаграмма состояния сплавов с перитектическим превращением
- •2.6. Диаграмма состояния сплавов, образующих химические соединения
- •2.7. Диаграмма состояния сплавов, испытывающих полиморфные превращения
- •3. Связь диаграмм состояния со свойствами сплавов
- •4. Основные сведения о диаграммах состояния тройных систем
- •Глава 5
- •1. Компоненты и фазы в сплавах железа с углеродом
- •2 Диаграмма состояния железо-цементит
- •3. Диаграмма состояния железо-графит
- •4. Углеродистые стали
- •4.1. Влияние углерода на свойства стали
- •4.2. Влияние примесей на свойства стали
- •4.3. Классификация углеродистых сталей
- •4.4. Стали обыкновенного качества
- •4.5. Качественные углеродистые стали
- •5. Чугуны
- •5.1. Виды чугунов
- •5.2. Факторы, способствующие графитизации
- •5 .3. Микроструктура и свойства чугуна
- •1. Общие сведения
- •2. Виды термической обработки стали
- •3. Превращения в стали при нагреве. Образование аустенита
- •4. Превращение аустенита в перлит при охлаждении. Диаграмма изотермического превращения аустенита
- •5. Мартееситное превращение аустенита
- •6 . Превращения при отпуске закаленной стали
- •Глава 7
- •1. Отжиг и нормализация
- •2. Закалка стали
- •3. Отпуск закаленной стали
- •4. Термомеханическая обработка (тмо) стали
- •Глава 8
- •1. Упрочнение поверхности методом пластического деформирования
- •2. Поверхностная закалка
- •3. Химико-термическая обработка стали
- •3.1. Общие сведения
- •3.2. Цементация стали
- •3.3. Азотирование стали
- •3.4. Цианирование стали
- •3.5 Диффузионная металлизация
- •Глава 9
- •1 Влияние легирующих элементов
- •1.1. Влияние легирующих элементов на свойства феррита
- •1.2. Карбиды в легированных сталях
- •1.3. Влияние легирующих элементов на превращения в стали
- •1.4. Особенности закалки и отпуска легированных сталей
- •2. Классификация легированных сталей
- •3. Маркировка легированных сталей
- •Глава 10
- •1. Характеристика конструкционных сталей
- •2. Стали для строительных конструкций
- •3. Цементуемые стали
- •4. Улучшаемые стали
- •5. Высокопрочные стали
- •6. Рессорно-пружинные стали
- •7. Подшипниковые стали
- •8. Износостойкая аустенитная высокомарганцевая сталь
- •Глава 11 инструментальные стали
- •1. Стали для режущего инструмента
- •1.1. Требования к сталям
- •1.2. Углеродистые стали
- •1.3. Легированные стали
- •1.4. Быстрорежущие стали
- •2. Металлокерамические твердые сплавы
- •3. Стали для измерительного инструмента
- •4. Штамповые стали
- •4.1. Стали для штампов холодного деформирования
- •4.2. Стали для штампов горячего деформирования
- •Глава 12
- •1. Коррозионностойкие стали
- •1.1. Общие сведения
- •1.2. Хромистые стали
- •1.4. Другие методы защиты От коррозии
- •2. Жаростойкие и жаропрочные стали и сплавы
- •3. Стали и сплавы с особыми физическими свойствами
- •3.1. Магнитные стали и сплавы
- •3.2. Электротехнические стали и сплавы
- •3.3. Сплавы с малым температурным коэффициентом линейного расширения
- •3.4. Сплавы для упругих элементов
- •3.5. Сплавы с эффектом памяти формы
- •Глава 13
- •1. Титан и его сплавы
- •2. Алюминий и его сплавы 2.1. Применение и основные свойства
- •2.2. Классификация алюминиевых сплавов
- •2.3. Деформируемые алюминиевые сплавы
- •2.4. Литейные алюминиевые сплавы
- •3.2. Строение композиционных материалов
- •3.3. Дисперсноупрочненные композиционные материалы на основе алюминия
- •3.4. Армированные композиционные материалы на основе алюминия и его сплавов
- •4. Магний и его сплавы
- •5. Медь и ее сплавы
- •5.1. Основные свойства меди
- •5.2. Сплавы меди с цинком или латуни
- •5.3. Бронзы
- •6. Антифрикционные сплавы
- •7. Припои
- •Глава 14
- •1. Общие сведения
- •2. Конструкционные материалы
- •3. Антифрикционные материалы
- •4. Фрикционные материалы
- •5. Пористые фильтрующие элементы
- •Глава 15
- •1. Общие сведения
- •2. Свойства и применение сталей при низких температурах
- •2.1. Влияние легирующих элементов на хладостойкость сталей климатического холода
- •2.2. Ферритные низкоуглеродистые никелевые стали
- •2.3. Аустенитные стали
- •2.4. Железоникелевые сплавы
- •3. Свойства и применение алюминиевых сплавов при низких температурах
- •4. Свойства и применение сплавов титана при низких температурах
- •5. Свойства и применение сплавов меди при низких температурах
- •6. Выбор конструкционных материалов для работы при низких температурах
- •6.1. Механические свойства
- •6.2. Совместимость с рабочей средой
- •6.3. Физические свойства
- •6.4. Технологические свойства
- •Раздел III. Литейное производство
- •Глава 1
- •1. Общие понятия
- •2. Формовочные материалы
- •3. Оснастка
- •4. Ручная формовка
- •5. Машинная формовка
- •6. Изготовление стержней
- •7. Окраска и сборка форм
- •8. Заливка и другие окончательные операции
- •Глава 2
- •1. Литье в кокиль
- •2. Литье по выплавляемым моделям
- •3. Центробежное литье
- •4. Литье под давлением
- •5. Литье в оболочковые формы
- •6. Другие специальные способы литья
- •Глава 3
- •1. Классификация дефектов
- •2. Выбор вида технологического процесса
- •3. Анализ технологичности
- •Глава 1
- •Глава 2
- •1. Способы прокатки
- •2. Классификация прокатных станов
- •3. Основы технологии продольной прокатки
- •5 . Специальные виды прокатки
- •6. Производство гнутых профилей
- •7. Производство сварных труб
- •Глава 3
- •1. Основные понятия и закономерности процесса волочения
- •2. Производство проволоки
- •3. Производство прутков и профилей
- •4. Производство труб
- •Глава 4
- •1. Прессовое оборудование
- •2. Технология прессования
- •3. Гидроэкструзия
- •Глава 5
- •1. Технология ковки
- •Глава 6
- •1. Горячая объемная штамповка
- •2. Холодная объемная штамповка
- •3. Листовая штамповка
- •Глава 7
- •1. Эффект сверхпластичности и его использование в процессах омд
- •2. Высокоскоростные и импульсные методы обработки металлов давлением
- •Раздел V. Сварочное производство
- •Глава 1
- •1. Роль и место технологического процесса сварки в современном производстве
- •2. Физическая сущность процесса сварки. Классификация
- •3. Сущность основных способов сварки плавлением и область их рационального применения
- •4. Сущность основных способов сварки давлением
- •Глава 2
- •1 . Сварочные материалы
- •2. Тепловое воздействие сварочного источника на свариваемый металл.
- •3. Деформация и напряжения, возникающие при сварке, и способы борьбы с ними
- •4. Источники питания для сварки
- •5. Автоматическое регулирование процессов дуговой сварки
- •Глава 3
- •1. Пайка металлов
- •2. Газокислородная резка металлов
- •Раздел VI. Обработка резанием
- •Глава 1
- •1. Схемы обработки и классификация движений в процессе резания
- •2. Элементы токарного проходного резца
- •3. Элементы резания и параметры срезаемого слоя
- •4. Процесс резания и образования стружки
- •5. Наростообразование при резании металлов
- •6. Силы резания и мощность при точении
- •7. Тепловые явления при резании
- •8. Применение смазочно-охлаждающих жидкостей
- •9. Износ и стойкость режущих инструментов
- •10. Упрочнение при обработке резанием
- •11. Производительность и выбор режима резания
- •12. Материалы для изготовления режущих инструментов
- •13. Обрабатываемость материалов
- •Глава 2
- •1. Классификация и обозначение металлорежущих станков
- •2. Приводы и передачи металлорежущих станков
- •3. Элементарные механизмы станков
- •4. Настройка кинематических цепей станков
- •Глава 3
- •1. Общие сведения
- •2. Классификация и типы токарных резцов
- •6. Обработка заготовок на токарно-револьверных станках
- •7. Токарно-карусельные и лобовые станки
- •8. Обработка заготовок на токарных автоматах и полуавтоматах
- •Глава 4
- •1. Сверление отверстий
- •2. Элементы и силы резания при сверлении
- •5. Сверлильные станки
- •Глава 5
- •1. Сущность фрезерования и классификация фрез
- •2. Элементы резания при фрезеровании
- •3. Силы и мощность резания при фрезеровании
- •4. Обработка заготовок на консольно-фрезерных станках
- •7. Приспособления для закрепления фрез
- •Глава 6
- •I. Особенности обработки строганием и долблением
- •2. Строгальные и долбежные резцы
- •3. Строгальные станки
- •4. Обработка заюговок на долбежных и протяжных станках
- •5. Протяжные станки
- •Глава 7 зубонарезание
- •1. Общие сведения
- •2. Нарезание зубчатых колес методом копирования
- •3. Нарезание зубчатых колес методом обкатки
- •4. Изготовление зубчатых колес на зубофрезерных станках
- •5. Изготовление зубчатых колес на зубодолбежных и зубострогальных станках
- •Глава 8
- •1. Общие сведения
- •4. Отделочные методы абразивной обработки
- •Глава 9
- •1. Общие сведения
- •2. Станки с программным управлением
- •4. Автоматические поточные линии и гибкие автоматические производства
- •Глава 10
- •1. Сущность методов обработки пластическим деформированием
- •3. Упрочняюще-калибрующие методы
- •Глава 11
2.3. Аустенитные стали
Хромоникелевые аустенитные стали благодаря сохранению высокой пластичности и вязкости вплоть до температур, близких к абсолютному нулю, высокой коррозионной стойкости и хорошим технологическим свойствам являются основным материалом для многих областей холодильной и криогенной техники.
Аустенитное состояние стали в широком температурном диапазоне стабилизируется благодаря введению в железохромистую основу достаточных количеств никеля.
Стабильность аустенитной структуры зависит от химического состава и внешних условий; температуры и деформации. Под влиянием низких температур и деформации хромоникелевые аустенитные стали могут испытывать мартенситное γ → α -превращение. Это приводит к увеличению твердости, снижает пластичность и вязкость стали.
В зависимости от содержания основных легирующих элементов различают два типа хромоникелевых сталей. К первому типу относятся метастабильные стали, претерпевающие заметное мартенситное превращение при охлаждении и деформации. Они содержат 18 - 20 % хрома и 8 - 12 % никеля. К ним относятся стали марок 12Х18Н8, 12Х18Н9Т, 12Х18Н10Т, 12Х18Н12Т. При необходимости полного подавления мартенситного превращения и сохранения аустенитной структуры вплоть до самых низких температур используют хромоникелевые стали, содержащие 18 - 25 % хрома и 14 - 25 % никеля. К сталям этого типа относятся 08Х25Н20, 08Х18Н20, 10Х15Н25МТ2 и др.
Все хромоникелевые аустенитные стали благодаря высокому содержанию хрома имеют высокую коррозионную стойкость. Однако при повторных нагревах, например при сварке, из-за образования карбидов хрома по границам зерен и обеднения rpaниц хромом эти стали склонны к межкристаллитной коррозии. Склонность к межкристаллитной коррозии может быть устранена снижением содержания углерода и введением стабилизаторов - сильных карбидообразователей: титана и ниобия.
Хромоникелевые аустенитные стали отличаются высокой технологичностью. Они хорошо деформируются в горячем и холодном состоянии. В холодном состоянии они допускают глубокую вытяжку. Эти стали хорошо подвергаются пайке и свариваются.
После сварки хромоникелевые аустенитные стали не образуют охрупченных околошовных зон и не требуют термической обработки после изготовления конструкции. Для сварки используют присадочную проволоку состава, близкого к основному металлу.
Хромоникелевые аустенитные стали сохраняют высокую вязкость после значительного пластического деформирования. Они нечувствительны к эффектам старения во времени и их ударная вязкость остается на высоком уровне даже после многолетней эксплуатации в условиях низких температур. Эти стали характеризуются высокими значениями вязкости разрушения в широком температурном диапазоне.
Механические свойства при низких температурах широко распространенной стали 12Х18Н10Т и ее заменителей — экономнолегированных аустенитных сталей на Cr - Ni - Mn и Cr - Mn основе, а также свойства стабильной аустенитной стали ОЗХ20Н16АГ6, приведены в табл. 26.
На рис. 144 приведены кривые изменения усталостной прочности при комнатной температуре и 77 К сталей 12Х18Н10Т и ОН9А, алюминиевого сплава АМг6.
Сталь 12Х18Н10Т, наиболее широко применяемая в технике низких температур, обладает высоким сопротивлением ползучести, термической усталости под нагрузкой и высокой усталостной прочностью. При температуре 77 К накапливаемая пластическая деформация при расчетном напряжении 130 - 140 МПа для десятилетнего срока эксплуатации не превышает 0,2 %. При температуре 20 К напряжение 200 МПа вызывает крайне незначительную деформацию - 0,02 %, находящуюся на грани точности измерений и практически не изменяющуюся во времени. Лишь напряжение 500 МПа дает начальную пластическую деформацию 0,5 %, увеличивающуюся при продолжительности испытания 100 ч до 0,7 %. Однако даже при таком высоком уровне напряжений суммарная деформация за период эксплуатации не превышает 2 %.
К недостаткам аустенитных хромоникелевых сталей относятся низкая прочность, особенно по пределу текучести, при комнатной температуре, а также сравнительно высокая стоимость, обусловленная высоким содержанием дорогого и дефицитного никеля. С целью повышения прочности эти стали дополнительно легируют элементами, способствующими дисперсионному упрочнению при старении. Так, высокая прочность стали 10Х15Н25МТ2 достигается за счет образования упрочняющей фазы NiTi после термообработки, состоящей из аустенитизации при 1000˚С и старения в течение 16 ч при 700˚ С.
Высокая стоимость никеля привела к созданию сталей, в которых никель полностью или частично заменен марганцем, также являющимся стабилизатором аустенита.
Исследования раздельного и совместного влияния марганца и хрома на механические свойства при низких температурах показали, что оптимальными по составу являются стали, содержащие 12 - 14 % хрома и 17 - 20 % марганца. Сталь отечественного производства ОЗХ13АГ19 рекомендована к применению до температуры 77 К для статически нагруженных сварных конструкций.
Более перспективными являются хромомарганцевые аустенитные стали, содержащие некоторое количество никеля. Как показывают эксперименты по оценке работоспособности при усталостном нагружении, содержание никеля должно быть не менее 3 - 4 %.
В СССР нашла применение сталь 10Х14Г14Н4Т. Эта сталь, обладая высокой вязкостью, уменьшающей опасность хрупкого разрушения, при сложных условиях нагружения имеет, как и сталь 12Х18Н10Т, относительно невысокий предел текучести при 293 К (σ0,2 ≥ 250 МПа), слабо увеличивающийся при понижении температуры.
Одним из путей повышения прочности аустенитных сталей для криогенной техники является легирование их азотом, образующим, как и углерод, твердые растворы внедрения. Присутствие хрома и особенно марганца способствует увеличению растворимости азота в стали. Азот упрочняет аустенитные стали за счет воздействия на их дислокационную структуру, образуя зоны с упорядоченной структурой наряду с неупорядоченной матрицей. С введением азота в сталь ее пластичность и вязкость несколько снижаются, но остаются на достаточно высоком уровне, характерном для аустенитных сталей. В отличие от углерода, азот в количестве до 0,25 % не ухудшает коррозионную стойкость стали.