
- •Общие сведения
- •Общие сведения
- •Глава 5. Железо и его сплавы
- •Общие сведения
- •1.2. Углеродистые стали
- •Общие сведения
- •Глава 13, Цветные металлы и сплавы
- •Общие сведения
- •Глава 14. Порошковые материалы
- •Общие сведения
- •Глава 15. Металлы и сплавы для работы при низких температурах
- •Общие сведения
- •Общие сведения
- •Общие сведения
- •Общие сведения
- •Общие сведения
- •Раздел I производство черных и цветных металлов.
- •Глава 1
- •1. Исходные материалы для доменного производства
- •2. Доменная печь
- •3. Доменный процесс
- •4 . Производство литейного чугуна
- •Глава 2
- •1. Кислородно-конвертерное произсодство стали
- •М артеновское производство стали
- •3. Производство стали в электропечах
- •4. Рафинирование стали в установках для переплава
- •5. Разливка стали
- •6. Внепечные способы рафинирования стали
- •Глава 3
- •1. Производство меди
- •2. Производство алюминия
- •3. Производство магния
- •4. Производство титана
- •Раздел II металловедение
- •Глава 1
- •1. Общие сведения
- •2. Кристаллическое строение металлов
- •3. Дефекты строения кристаллических тел
- •3.1. Точечные дефекты
- •3.2. Линейные дефекты
- •3.3. Теоретическая и фактическая прочность
- •3.4. Поверхностные дефекты
- •4. Кристаллизация металлов
- •4.1. Энергетические условия кристаллизации
- •4.2. Механизм процесса кристаллизации
- •4.3. Строение слитка спокойной стали
- •Глава 2
- •1. Свойства металлов и сплавов
- •2. Упругая и пластическая деформация
- •3. Хрупкое и вязкое разрушение
- •4. Факторы, определяющие характер разрушения
- •5. Наклеп, возврат и рекристаллизация
- •Глава 3
- •1. Общие сведения
- •2. Особенности испытаний при низких температурах
- •3. Статические испытания
- •4. Динамические испытания
- •5. Испытания долговечности металлов
- •5.1. Усталостные испытания
- •5.2. Испытания на ползучесть
- •6. Трещнностойкость металлов и коэффициент интенсивности напряжений
- •7. Испытания на вязкость разрушения
- •Глава 4
- •1. Общие сведения
- •2. Основные типы диаграмм состояния
- •2.1. Диаграмма состояния сплавов, образующих механические смеси из чистых компонентов
- •2.2. Диаграмма состояния сплавов с неограниченной растворимостью компонентов в твердом состоянии
- •2.3. Правило отрезков
- •2.4. Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии
- •2.5. Диаграмма состояния сплавов с перитектическим превращением
- •2.6. Диаграмма состояния сплавов, образующих химические соединения
- •2.7. Диаграмма состояния сплавов, испытывающих полиморфные превращения
- •3. Связь диаграмм состояния со свойствами сплавов
- •4. Основные сведения о диаграммах состояния тройных систем
- •Глава 5
- •1. Компоненты и фазы в сплавах железа с углеродом
- •2 Диаграмма состояния железо-цементит
- •3. Диаграмма состояния железо-графит
- •4. Углеродистые стали
- •4.1. Влияние углерода на свойства стали
- •4.2. Влияние примесей на свойства стали
- •4.3. Классификация углеродистых сталей
- •4.4. Стали обыкновенного качества
- •4.5. Качественные углеродистые стали
- •5. Чугуны
- •5.1. Виды чугунов
- •5.2. Факторы, способствующие графитизации
- •5 .3. Микроструктура и свойства чугуна
- •1. Общие сведения
- •2. Виды термической обработки стали
- •3. Превращения в стали при нагреве. Образование аустенита
- •4. Превращение аустенита в перлит при охлаждении. Диаграмма изотермического превращения аустенита
- •5. Мартееситное превращение аустенита
- •6 . Превращения при отпуске закаленной стали
- •Глава 7
- •1. Отжиг и нормализация
- •2. Закалка стали
- •3. Отпуск закаленной стали
- •4. Термомеханическая обработка (тмо) стали
- •Глава 8
- •1. Упрочнение поверхности методом пластического деформирования
- •2. Поверхностная закалка
- •3. Химико-термическая обработка стали
- •3.1. Общие сведения
- •3.2. Цементация стали
- •3.3. Азотирование стали
- •3.4. Цианирование стали
- •3.5 Диффузионная металлизация
- •Глава 9
- •1 Влияние легирующих элементов
- •1.1. Влияние легирующих элементов на свойства феррита
- •1.2. Карбиды в легированных сталях
- •1.3. Влияние легирующих элементов на превращения в стали
- •1.4. Особенности закалки и отпуска легированных сталей
- •2. Классификация легированных сталей
- •3. Маркировка легированных сталей
- •Глава 10
- •1. Характеристика конструкционных сталей
- •2. Стали для строительных конструкций
- •3. Цементуемые стали
- •4. Улучшаемые стали
- •5. Высокопрочные стали
- •6. Рессорно-пружинные стали
- •7. Подшипниковые стали
- •8. Износостойкая аустенитная высокомарганцевая сталь
- •Глава 11 инструментальные стали
- •1. Стали для режущего инструмента
- •1.1. Требования к сталям
- •1.2. Углеродистые стали
- •1.3. Легированные стали
- •1.4. Быстрорежущие стали
- •2. Металлокерамические твердые сплавы
- •3. Стали для измерительного инструмента
- •4. Штамповые стали
- •4.1. Стали для штампов холодного деформирования
- •4.2. Стали для штампов горячего деформирования
- •Глава 12
- •1. Коррозионностойкие стали
- •1.1. Общие сведения
- •1.2. Хромистые стали
- •1.4. Другие методы защиты От коррозии
- •2. Жаростойкие и жаропрочные стали и сплавы
- •3. Стали и сплавы с особыми физическими свойствами
- •3.1. Магнитные стали и сплавы
- •3.2. Электротехнические стали и сплавы
- •3.3. Сплавы с малым температурным коэффициентом линейного расширения
- •3.4. Сплавы для упругих элементов
- •3.5. Сплавы с эффектом памяти формы
- •Глава 13
- •1. Титан и его сплавы
- •2. Алюминий и его сплавы 2.1. Применение и основные свойства
- •2.2. Классификация алюминиевых сплавов
- •2.3. Деформируемые алюминиевые сплавы
- •2.4. Литейные алюминиевые сплавы
- •3.2. Строение композиционных материалов
- •3.3. Дисперсноупрочненные композиционные материалы на основе алюминия
- •3.4. Армированные композиционные материалы на основе алюминия и его сплавов
- •4. Магний и его сплавы
- •5. Медь и ее сплавы
- •5.1. Основные свойства меди
- •5.2. Сплавы меди с цинком или латуни
- •5.3. Бронзы
- •6. Антифрикционные сплавы
- •7. Припои
- •Глава 14
- •1. Общие сведения
- •2. Конструкционные материалы
- •3. Антифрикционные материалы
- •4. Фрикционные материалы
- •5. Пористые фильтрующие элементы
- •Глава 15
- •1. Общие сведения
- •2. Свойства и применение сталей при низких температурах
- •2.1. Влияние легирующих элементов на хладостойкость сталей климатического холода
- •2.2. Ферритные низкоуглеродистые никелевые стали
- •2.3. Аустенитные стали
- •2.4. Железоникелевые сплавы
- •3. Свойства и применение алюминиевых сплавов при низких температурах
- •4. Свойства и применение сплавов титана при низких температурах
- •5. Свойства и применение сплавов меди при низких температурах
- •6. Выбор конструкционных материалов для работы при низких температурах
- •6.1. Механические свойства
- •6.2. Совместимость с рабочей средой
- •6.3. Физические свойства
- •6.4. Технологические свойства
- •Раздел III. Литейное производство
- •Глава 1
- •1. Общие понятия
- •2. Формовочные материалы
- •3. Оснастка
- •4. Ручная формовка
- •5. Машинная формовка
- •6. Изготовление стержней
- •7. Окраска и сборка форм
- •8. Заливка и другие окончательные операции
- •Глава 2
- •1. Литье в кокиль
- •2. Литье по выплавляемым моделям
- •3. Центробежное литье
- •4. Литье под давлением
- •5. Литье в оболочковые формы
- •6. Другие специальные способы литья
- •Глава 3
- •1. Классификация дефектов
- •2. Выбор вида технологического процесса
- •3. Анализ технологичности
- •Глава 1
- •Глава 2
- •1. Способы прокатки
- •2. Классификация прокатных станов
- •3. Основы технологии продольной прокатки
- •5 . Специальные виды прокатки
- •6. Производство гнутых профилей
- •7. Производство сварных труб
- •Глава 3
- •1. Основные понятия и закономерности процесса волочения
- •2. Производство проволоки
- •3. Производство прутков и профилей
- •4. Производство труб
- •Глава 4
- •1. Прессовое оборудование
- •2. Технология прессования
- •3. Гидроэкструзия
- •Глава 5
- •1. Технология ковки
- •Глава 6
- •1. Горячая объемная штамповка
- •2. Холодная объемная штамповка
- •3. Листовая штамповка
- •Глава 7
- •1. Эффект сверхпластичности и его использование в процессах омд
- •2. Высокоскоростные и импульсные методы обработки металлов давлением
- •Раздел V. Сварочное производство
- •Глава 1
- •1. Роль и место технологического процесса сварки в современном производстве
- •2. Физическая сущность процесса сварки. Классификация
- •3. Сущность основных способов сварки плавлением и область их рационального применения
- •4. Сущность основных способов сварки давлением
- •Глава 2
- •1 . Сварочные материалы
- •2. Тепловое воздействие сварочного источника на свариваемый металл.
- •3. Деформация и напряжения, возникающие при сварке, и способы борьбы с ними
- •4. Источники питания для сварки
- •5. Автоматическое регулирование процессов дуговой сварки
- •Глава 3
- •1. Пайка металлов
- •2. Газокислородная резка металлов
- •Раздел VI. Обработка резанием
- •Глава 1
- •1. Схемы обработки и классификация движений в процессе резания
- •2. Элементы токарного проходного резца
- •3. Элементы резания и параметры срезаемого слоя
- •4. Процесс резания и образования стружки
- •5. Наростообразование при резании металлов
- •6. Силы резания и мощность при точении
- •7. Тепловые явления при резании
- •8. Применение смазочно-охлаждающих жидкостей
- •9. Износ и стойкость режущих инструментов
- •10. Упрочнение при обработке резанием
- •11. Производительность и выбор режима резания
- •12. Материалы для изготовления режущих инструментов
- •13. Обрабатываемость материалов
- •Глава 2
- •1. Классификация и обозначение металлорежущих станков
- •2. Приводы и передачи металлорежущих станков
- •3. Элементарные механизмы станков
- •4. Настройка кинематических цепей станков
- •Глава 3
- •1. Общие сведения
- •2. Классификация и типы токарных резцов
- •6. Обработка заготовок на токарно-револьверных станках
- •7. Токарно-карусельные и лобовые станки
- •8. Обработка заготовок на токарных автоматах и полуавтоматах
- •Глава 4
- •1. Сверление отверстий
- •2. Элементы и силы резания при сверлении
- •5. Сверлильные станки
- •Глава 5
- •1. Сущность фрезерования и классификация фрез
- •2. Элементы резания при фрезеровании
- •3. Силы и мощность резания при фрезеровании
- •4. Обработка заготовок на консольно-фрезерных станках
- •7. Приспособления для закрепления фрез
- •Глава 6
- •I. Особенности обработки строганием и долблением
- •2. Строгальные и долбежные резцы
- •3. Строгальные станки
- •4. Обработка заюговок на долбежных и протяжных станках
- •5. Протяжные станки
- •Глава 7 зубонарезание
- •1. Общие сведения
- •2. Нарезание зубчатых колес методом копирования
- •3. Нарезание зубчатых колес методом обкатки
- •4. Изготовление зубчатых колес на зубофрезерных станках
- •5. Изготовление зубчатых колес на зубодолбежных и зубострогальных станках
- •Глава 8
- •1. Общие сведения
- •4. Отделочные методы абразивной обработки
- •Глава 9
- •1. Общие сведения
- •2. Станки с программным управлением
- •4. Автоматические поточные линии и гибкие автоматические производства
- •Глава 10
- •1. Сущность методов обработки пластическим деформированием
- •3. Упрочняюще-калибрующие методы
- •Глава 11
1. Общие сведения
Т
ермической
обработкой называется совокупность
операций нагрева, выдержки и охлаждения
твердых металлических сплавов с целью
получения заданных свойств за счет
изменения внутреннего строения и
структуры.
Термическая обработка является одним из наиболее распространенных в современной технике способов получения заданных свойств металла. Термическая обработка используется либо в качестве промежуточной операции для улучшения обрабатываемости давлением, резанием и др., либо как окончательная операция технологического процесса, обеспечивающая заданный уровень физико-механических свойств детали.
Так как основными факторами любого вида термической обработки являются температура и время, то режим термообработки обычно представляется графиком в координатах t - τ или t - lgτ, где t - температура, τ - время (рис.. 91). Угол наклона характеризует скорость нагрева или охлаждения. Постоянная скорость нагрева или охлаждения изображается на графике прямой линией с определенным углом наклона.
В результате термической обработки в сплавах происходят структурные изменения. После термообработки металлические сплавы могут находиться в равновесном (стабильном) и неравновесном (метастабильном) состоянии.
Равновесное состояние достигается тогда, когда полностью завершатся все протекающие в сплавах процессы. При этом строение сплава будет соответствовать диаграмме состояния. Неравновесное состояние получается при условиях, препятствующих полному завершению протекающих процессов.
Примером сохраняющихся длительное время неравновесных состояний являются наклеп, неоднородность химического состава вследствие ликвации, структура булатной стали.
Увеличение теплового движения атомов при нагреве способствует переходу в равновесное состояние.
Принято обозначать критические точки стали буквой А по начальной букве французского слова аггеt - остановка. Критические точки A1 лежат на линии РSK (727 °С) диаграммы железо-углерод и соответствуют превращению перлита в аустенит (рис. 92). Критические точки A2 находятся на линии МО (768 °С), характеризующей магнитное превращение феррита. А3 соответствует линиям GS и SE. На линии GS начинается выделение феррита из аустенита при охлаждении или завершается превращение феррита в аустенит при нагреве. На линии SE начинается выделение вторичного цементита из аустенита при охлаждении или заканчивается его растворение в аустените при нагреве.
Вследствие теплового гистерезиса превращения при нагреве и охлаждении проходят при разных температурах. Поэтому для обозначения критических точек при нагреве и охлаждении вводят дополнительные индексы: букву «с» в случае нагрева и «г» в случае охлаждения, например Ас1,, Ас3,, Aг1, Аr3 (начальные буквы от французских слов chauffe - нагрев и геfroidissement - охлаждение). Таким образом, Ас1 - критическая точка, соответствующая превращению П → А, а Ar1—А→П; Aс3 критическая точка конца растворения Ф в А, а Ar3 - начало выделения Ф из А. Начало выделения вторичного цементита из аустенита также обозначают Аrа, а конец растворения вторичного цементита в аустените часто обозначают Аст.
Общая длительность нагрева металла при термической обработке τобщ складывается из времени собственно нагрева до заданной температуры τн и времени выдержки при этой температуре τB: τобщ = τн + τB. Время нагрева зависит от типа печи, размеров деталей, их укладки в печи; время выдержки зависит от скорости протекания фазовых превращений.
Нагрев печей для термической обработки производится электроэнергией, газом, жидким или твердым топливом. Печи для термической обработки должны обеспечивать возможность контроля и регулирования температуры, а также равномерную температуру в рабочем пространстве.
Нагрев может сопровождаться взаимодействием поверхности металла с газовой фазой. Химическое взаимодействие металла с кислородом может приводить к обезуглероживанию поверхностного слоя (С + О2 → СО2) и образованию окалины в количестве до 1-3 % от массы металла (2Fе + О2 → 2FеО).
Обезуглероживание приводит к тому, что поверхность деталей, подвергающаяся наибольшим нагрузкам и износу при эксплуатации, становится менее прочной и теряет твердость. Окалино-образование приводит к угару металла, меняет форму деталей и
портит их поверхность. Окалина удаляется с поверхности травлением и дробеструйной очисткой.
Для уменьшения окислительных процессов снижают коэффициент избытка воздуха, применяют рециркуляционные печи, печи с контролируемой атмосферой. Для предохранения от окисления и обезуглероживания применяют также нагрев изделий в соляных ваннах. Для нагрева используют хлористые соли NaС1, КС1, ВаС12 в различных сочетаниях. Температура нагрева в солях обычно составляет 750-1000 °С и более. Однако, нагрев в солях сравнительно сложен в осуществлении и ограничен размерами деталей. Для поверхностной термической обработки, например, поверхностной закалки, широко применяется индукционный нагрев.
Охлаждение при термообработке производится с различной скоростью. При отжиге металл охлаждают медленно вместе с печью, при нормализации — на воздухе, при закалке применяют быстрое охлаждение в специальных средах.