
- •Полупроводниковые приборы. Свойства выпрямительных диодов (вольтамперные характеристики, предельные эксплуатационные параметры, схема замещения). Понятие об идеальном диоде.
- •Вторичные источники электропитания. Назначение, требования к свойствам и структурная схема аналогового источника.
- •Однополупериодный выпрямитель.
- •Выбор диодов для выпрямителей.
- •Сглаживающие фильтры.
- •Внешние характеристики выпрямителей.
- •Параметрический стабилизатор напряжения.
- •Выходная характеристика транзистора.
- •Усилитель напряжения на биполярном транзисторе.
- •Усилитель напряжения на биполярном транзисторе.
- •Полоса пропускания усилителя
- •Многокаскадный усилитель.
- •Эмиттерный повторитель. Принципиальная схема. Схема замещения. Принцип действия. Коэффициент усиления по напряжению. Входное и выходное сопротивления.
- •Избирательный усилитель. Схема с параллельным колебательным контуром. Назначение элементов. Амплитудно-частотная характеристика. Полоса пропускания. Пример использования избирательного усилителя.
- •Усилитель постоянного тока. Назначение. Схема упт с гальванической связью. Принцип действия, основные недостатки и способы их преодоления. Параллельно- балансный упт.
- •Преобразования сигналов и их цели. Амплитудная модуляция. Пример гармонической модуляции, спектр ам – сигнала. Чм- и фм- модуляции. Достоинства и недостатки разных способов модуляции.
- •Преобразования сигнала.
- •Амплитудная модуляция.
- •Помехи и борьба с ними.
- •Помехи, вызванные индуктивными связями. Физика процессов, схемы замещения и методы борьбы.
- •Помехи, вызванные емкостными связями. Физика процессов, схемы замещения и методы борьбы.
- •Помехи, вызванные гальваническими (кондуктивными) связями. Физика процессов, схемы замещения и методы борьбы.
- •Таким образом, современные методы борьбы с помехами в электронных устройствах – электромагнитное и электростатическое экранирование, заземление, селекция и обработка сигнала.
- •Фильтры для подавления помех. Принцип действия. Пример сетевого фильтра.
- •Полевые транзисторы.
- •Тиристоры. Вольтамперная характеристика. Схема устройства для управления средним и действующим токами нагрузки.
- •Тиристоры.
- •Передаточная характеристика оу и коэффициент усиления.
- •Входное и выходное сопротивления оу.
- •Неинвертирующий усилитель напряжения с оу. Схема. Назначение элементов. Коэффициент усиления. Переходная характеристика. Рабочий участок. Амплитудная характеристика.
- •Дифференцирующее устройство
- •Интегрирующее устройство
- •Избирательный усилитель напряжения на оу с двойным т-мостом. Ачх звена отрицательной обратной связи. Ачх усилителя.
- •Избирательный усилитель
- •Электронный генератор гармонических колебаний с оу с положительной обратной связью. Условия самовозбуждения. Пример генератора с параллельным колебательным контуром.
- •Электронный генератор импульсных колебаний с оу с положительной обратной связью. Пример мультивибратора. Принцип действия. Осциллограммы напряжения.
- •Электронный генератор импульсных колебаний.
- •Цифровые электронные устройства.
- •Триггеры. Основные свойства. Примеры устройств, свойства и назначения rs-триггеров, d –триггеров.
- •Ограничители уровней сигналов. Назначение. Пример ограничителя с диодами и стабилитронами. Схемы, принцип действия, осциллограммы напряжений. Достоинства и недостатки.
- •Триггер на биполярных транзисторах. Схема, назначение элементов, осциллограммы напряжений, принцип действия.
- •Мультивибратор на биполярных транзисторах. Схема, назначение элементов, осциллограммы напряжений, принцип действия.
- •Ждущий мультивибратор на биполярных транзисторах. Схема, назначение элементов, осциллограммы напряжений, принцип действия
- •Генератор пилообразного напряжения. Схема, назначение элементов, осциллограммы напряжений, принцип действия.
- •Цифро-аналоговый преобразователь. Характеристика преобразования. Примеры реализации цап сумматором на оу. Пример интегральной микросхемы цап с внешним оу.
- •Дешифраторы.
- •Мультиплексоры.
- •Измерительные преобразователи (ип) физических величин в электрические.
- •Резистивные измерительные преобразователи
- •Емкостные измерительные преобразователи
- •Индуктивные, трансформаторные и индукционнные измерительные первичные преобразователи. Примеры устройств, передаточные функции.
- •Электромагнитные измерительные преобразователи
- •Схемы включения первичных преобразователей: термопара (прямое измерение), терморезистор (мостовая цепь). Понятие о дифференциальном преобразователе на примере индуктивного ип.
- •Схемы включения первичных преобразователей
- •Компенсационные метод измерения напряжения. Четырехзажимный ип.
- •Четырехзажимный ип.
- •Принцип действия аналогового и цифрового осциллографов. Структурные схемы, назначения элементов, преобразования сигналов. Понятие о компьютерном осциллографе.
- •Аналоговые осциллографы.
- •Цифровые осциллографы.
- •Компьютерные осциллографы.
- •Электронные аналоговые омметры. Два варианта схемы. Настройки перед измерениями.
- •Электронные аналоговые измерители индуктивности и емкости (куметры).
- •Электронные аналоговые фазометры. Структурная схема. Принцип действия.
- •Электронные аналоговые фазометры. Структурная схема. Принцип действия.
- •Цифровые частотомеры и фазометры. Упрощенные структурные схемы. Принципы действия.
-
Помехи, вызванные емкостными связями. Физика процессов, схемы замещения и методы борьбы.
Емкостная связь возникает из-за распределенных емкостей между проводами и элементами. Этот вид помехи можно легко наблюдать на экране осциллограф если прикоснуться к сигнальному проводу, подключенному к входу осциллографа. На рис.7.9. представлена схема, в которой имеется внешняя линия A с переменным напряжением U1 (например, фазный провод сети с частотой 50Гц) и линия B с измерительным сигналом U2 частотой f.
Обе линии имеют слева источники и справа приемники с некоторыми сопротивлениями. Между проводами A и B имеется распределенная емкость, которая на схеме отражена эквивалентным элементом Cп.
Рис.7.9. Возникновение помехи через распределенные емкости.
Источник в сети U1 создает на проводе B напряжение аддитивной помехи UП. Значение напряжения помехи зависит от емкостного сопротивления и , следовательно, от емкости СП. С увеличением емкости Cп (например, с увеличением длины проводов или с уменьшением расстояния между линиями A и B) амплитуда помехи увеличивается
. Если линию B сделать коаксиальной
с заземленным экраном как на упрощенной
схеме рис.7.10, то напряжение этой помехи
упадет до нуля.
Рис.7.10. Устранение помехи через распределенные емкости с помощью коаксиального кабеля.
Заметим, что на рис.7.10 заземление произведено в одной общей точке. Это принципиально важно. Нужно, чтобы токи, вызванные паразитными емкостями не вызывали падения напряжения на проводах, соединяющих части устройства с сигналом.
В реальных системах индуктивные и емкостные помехи могут возникать одновременно. На рис.7.10 заземление экрана коаксиального кабеля устроено только в одной точке. Если экран заземлить в двух точках как на рис.7.11, то образуется замкнутый контур abcd , в котором переменное магнитное поле создаст ЭДС электромагнитной индукции.
Рис.7.12. Неправильное повторное заземление экрана коаксиального кабеля, приводящее к индуктивным помехам.
-
Помехи, вызванные гальваническими (кондуктивными) связями. Физика процессов, схемы замещения и методы борьбы.
Кондуктивная связь возникает, например, когда несколько потребителей получают электрическую энергию от одного источника питания (рис.7.13). Здесь два усилительных устройства У1 и У2 питаются от одного источника постоянного напряжения И. В общем для обоих усилителей проводе ab ток равен сумме токов усилителей. Переменная составляющая i2(t) тока усилителя У2 создает на сопротивлении провода Rab переменную составляющую напряжения ua(t)=Ea-Rab i2(t). Часть этого напряжения через резисторы, устанавливающие режимы транзисторов по постоянному току, попадет на вход У1 и образует помеху.
Рис.7.13.
Схема возникновения помехи в общих
цепях питания электронных устройств.
Борьба с этими помехами ведется путем уменьшения сопротивления проводов (увеличение диаметра проводов, применение шин большого сечения) и установкой фильтрующих элементов (например конденсатора фильтра Cф как на рис. 7.13).
Мощным средством борьбы с помехами является фильтрация (селекция) сигнала. Современные методы фильтрации позволяют за счет сужения полосы пропускания устройств уменьшить энергию помехи. Фильтрация сигналов осуществляется избирательными усилителями -фильтрами.
Важным количественным показателем электронной системы является отношение амплитуды сигнала к шуму. В качественных системах оно должно быть значительно больше 1.
Если форма сигнала известна, то с применением корреляционных методов обработки сигнала удается получить полезную информацию даже в тех случаях, когда энергия помехи превышает энергию сигнала, т.е. когда отношение сигнала к шуму меньше 1.