
- •1. Общая схема синтеза и распада пиримидиновых нуклеотидов. Регуляция. Оротацидурия.
- •2. Общая схема синтеза и распада пуриновых нуклеотидов. Регуляция. Подагра.
- •3. Синтез дезоксирибонуклеотидов. Регуляция.
- •4. Общая схема распада нуклеиновых кислот, ферменты, субстраты, продукты.
- •7. Первичная структура нуклеиновых кислот. Днк и рнк – черты сходства и различия состава, локализации в клетке, функции.
- •8. Вторичная структура днк (модель Уотсона и Крика). Связи, стабилизирующие вторичную структуру днк. Комплементарность. Правило Чаргаффа. Полярность. Антипараллельность.
- •9. Гибридизация нуклеиновых кислот. Денатурация и ренативация днк. Гибридизация (днк-днк, днк-рнк). Методы лабораторной диагностики, основанные на гибридизации нуклеиновых кислот.
- •10. Третичная структура днк. Роль гистоновых и негистоновых белков в компактизации днк. Организация хроматина. Ковалентная модификация гистонов и ее роль в регуляции структуры и активности хроматина.
- •11. Репликация. Принципы репликации днк. Стадии репликации. Инициация. Белки и ферменты, принимающие участие в формировании репликативной вилки.
- •12. Элонгация и терминация. Ферменты. Асимметричный синтез днк. Фрагменты Оказаки. Роль днк-лигазы в формировании непрерывной отстающей цепи.
- •13. Теломерная днк. Синтез теломерной днк.
- •14. Повреждения и репарация днк. Виды повреждений. Способы репарации. Дефекты репарационных систем и наследственные болезни.
- •16. Элонгация, терминация транскрипции (ρ-независимая, ρ-зависимая терминация)
- •17. Особенности транскрипции у эукариот. Структура белков, регулирующих процесс транскипции.
- •15. Транскрипция у прокариот. Характеристика компонентов системы синтеза рнк. Структура днк-зависимой рнк-полимеразы: роль субъединиц (α2ββ′δ). Инициация процесса.
- •18. Первичный транскрипт и его процессинг. Рибозимы как пример каталитической активности нуклеиновых кислот. Биороль.
- •19. Регуляция транскрипции у прокариот. Теория оперона, регуляция по типу индукции и репрессии (примеры).
- •2. Индукция синтеза белков. Lac-оперон
- •3. Репрессия синтеза белков. Триптофановый и гистидиновый опероны
- •20. Механизмы регуляции экспрессии генов у эукариот.
- •21. Постранскрипционная регуляция у эукариот, обеспечивающая разнообразие белков: альтернативный сплайсинг. Редактирование рнк.
- •22. Механизмы генетической изменчивости. Наследственные болезни
- •23. Биосинтез белков (трансляция). Основные компоненты белоксинтезирующей системы: аминокислоты, т-рнк, рибосомы, источники энергии, белковые факторы, ферменты.
- •24. Строение и функции рибосом. Связывающие и каталитическик центры рибосом.
- •25. Активация аминокислот. Аминоацил-т-рнк синтетазы, субстратная специфичность.
- •1. Субстратная специфичность
- •26. Сборка полипептидной цепи на рибосоме. Образование инициаторного комплекса у прокариот. Особенности стадии инициации у эукариот.
- •1. Инициация
- •2. Элонгация
- •3. Терминация
- •27. Элонгация: образование пептидной связи (р-ция транспептидации). Транслокация. Транслоказа. Терминация. Роль белковых факторов на каждой из стадий трансляции.
- •28. Регуляция биосинтеза белков на уровне трансляции. Изменение скорости трансляции.
- •Механизмы образования ковалентных связей
3. Терминация
Терминация трансляции наступает в том случае, когда в А-центр рибосомы попадает один из стоп-кодонов: UAG, UAA или UGA. Для стоп-кодонов нет соответствующих тРНК. Вместо этого к рибосоме присоединяются 2 белковых высвобождающих фактора RF (от англ, releasingfactor) илифактора терминации. Один из них с помощью пептидилтрансферазного центра катализирует гидролитическое отщепление синтезированного пептида от тРНК. Другой за счёт энергии гидролиза ГТФ вызывает диссоциацию рибосомы на субъединицы (рис. 4-41).
Таким образом, матричная природа процесса трансляции проявляется в том, что последовательность поступления аминоацил-тРНК в рибосому для синтеза белка строго детерминирована мРНК, т.е. порядок расположения кодонов вдоль цепи мРНК однозначно задаёт структуру синтезируемого белка. Рибосома сканирует цепь мРНК в виде триплетов и последовательно отбирает из окружающей среды "нужные" аа-тРНК, освобождая в ходе элонгации деацилированные тРНК.
Малая и большая субъединицы рибосомы в процессе трансляции выполняют разные функции: малая субъединица присоединяет мРНК и декодирует информацию с помощью тРНК и механизма транслокации, а большая субъединица ответственна за образование пептидных связей.
27. Элонгация: образование пептидной связи (р-ция транспептидации). Транслокация. Транслоказа. Терминация. Роль белковых факторов на каждой из стадий трансляции.
Элонгация
Факторы элонгации повышают активность РНК-полимеразы и облегчают расхождение цепей ДНК. Синтез молекулы РНК идёт от 5'- к З'-концу комплементарно матричной цепи ДНК. На стадии элонгации, в области транскрипционной
вилки, одновременно разделены примерно 18 нуклеотидных пар ДНК. Растущий конец цепи РНК образует временную гибридную спираль, около 12 пар нуклеотидных остатков, с матричной цепью ДНК. По мере продвижения РНК-полимеразы по матрице в направлении от 3'- к 5'-концу впереди неё происходит расхождение, а позади - восстановление двойной спирали ДНК.
28. Регуляция биосинтеза белков на уровне трансляции. Изменение скорости трансляции.
Изменение скорости трансляции
Хотя изменение скорости образования белков на уровне трансляции не относят к числу основных способов регуляции количества и разнообразия белков, некоторые случаи такой регуляции известны. Наиболее изученный пример - синтез белков в ретикулоцитах. Известно, что на этом уровне дифференцировки кроветворные клетки лишены ядра, а следовательно, и ДНК. Регуляция синтеза белка-глобина осуществляется только на уровне трансляции и зависит от содержания тема в клетке (рис. 4-56). Если внутриклеточная концентрация тема высока, то глобин синтезируется; когда содержание тема снижается, то ингибируется и образование глобина. Остановка синтеза белка осуществляется за счёт фосфорилирования фактора инициации eIF2, который в фосфорилированной форме неактивен. Гем предотвращает фосфорилирование eIF2, связываясь со специфической протеинкиназой, которая получила название гемкиназы.
Некоторые мРНК содержат элементы вторичной структуры на 5'- или 3'-концах нетранслируемого участка мРНК, к которым могут присоединяться белки и ингибировать трансляцию. Например, синтез ферритина - белка, обеспечивающего хранение ионов железа в клетке, усиливается при повышении внутриклеточной концентрации железа (см. раздел 14). Обнаружено, что мРНК ферритина на 5'-конце имеет петли, к которым при низкой концентрации железа присоединяется регудяторный белок. Когда этот белок связан с мРНК, то трансляция не идёт. Если концентрация ионов железа в клетке повышается, то Fe3+ взаимодействует с белком, изменяет его конформацию и сродство к мРНК. мРНК освобождается от регуляторного белка, и на ней начинается синтез ферритина.
Регуляция на уровне трансляции. Важное значение имеет обеспеченность клетки аминокислотами, особенно незаменимыми. При недостатке какой-либо аминокислоты задерживается образование соответствующей аминоацилтРНК, что ведет к торможению трансляции.
Известны различные ингибиторы белкового синтеза, действующие либо на сами м-РНК, либо на процессы инициации, элонгации или терминации. Например, антибиотик пуромицин останавливает элонгацию пептидной цепи. Он обладает сходством с аминоацилтРНК и связывается с синтезирующимся пептидом. Но пуромицин не имеет петлю антикодон, вследствии этого не может соединяться с мРНК и взаимодействовать с новой аминоацилтРНК. Образовавшийся пептидилпуромицин отделяется от рибосомы и синтез белка прекращается. На уровне трансляции действуют и другие антибиотики – тетрациклин, левомицетин, стрептомицин и др.
Антибиотики могут влиять не только на трансляцию, например, имеются антибиотики, препятствующие разделению цепей ДНК (метамицин); антибиотики, прекращающие транскрипцию (актиномицин, канамицин).
29. Процессинг первичных полипептидных цепей после трансляции: частичный протеолиз, образование ковалентных связей, присоединение простетических групп, ковалентная модификация аминокислотных остатков (гликозилирование, метилирование, фосфорилирование, ацетилирование).
Регуляция каталитической активности ферментов частичным (ограниченным) протеолизом
Некоторые ферменты, функционирующие вне клеток (в ЖКТ или в плазме крови), синтезируются в виде неактивных предшественников и активируются только в результате гидролиза одной или нескольких определённых пептидных связей, что приводит к отщеплению части белковой молекулы предшественника. В результате в оставшейся части белковой молекулы происходит конформационная перестройка и формируется активный центр фермента.
Рассмотрим механизм частичного протеолиза на примере активации протеолитического фермента трипсина (рис. 2-34). Трип-синоген, синтезируемый в поджелудочной железе, при пищеварении по протокам поджелудочной железы поступает в двенадцатиперстную кишку, где и активируется путём частичного протеолиза под действием фермента кишечника энтеропептидазы. В результате отщепления гексапептида с N-конца формируется активный центр в оставшейся части молекулы. Следует напомнить,
что трипсин относят к семейству "сериновых" протеаз - активный центр фермента содержит функционально важный остаток Сер.
Частичный протеолиз - пример регуляции, когда активность фермента изменяется необратимо. Такие ферменты функционируют, как правило, в течение короткого времени, определяемого временем жизни белковой молекулы. Частичный протеолиз лежит в основе активации протеолитических ферментов, белков свёртывающей системы крови и фибринолиза, белков системы комплемента, а также пептидных гормонов.