Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на вопросы к экзамену по математике.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
3.79 Mб
Скачать

Вопрос №7: «Теорема Крамера, формулы Крамера».

Пусть Δ = |A| определитель матричной системы n линейных уравнений с n неизвестных, а Δj определитель матрицы, полученный из матричной системы заменой j-того столбца на столбец правых частей. Тогда если Δ ≠ 0, то система имеет единственное решение, определенное по формулам.

Вопрос №8: «Решение систем линейных уравнений методом Гаусса».

Решение и исследование систем линейных уравнений методом Гаусса. Этот метод решения систем линейных уравнений пригоден для решения систем с любым числом уравнений и неизвестных.

Суть метода Гаусса заключается в преобразовании заданной системы уравнений с помощью элементарных преобразований в эквивалентную систему ступенчатого треугольного вида.

Полученная система содержит все неизвестные в первом уравнении. Во втором уравнении отсутствует первое неизвестное, в третьем уравнении отсутствуют первое и второе неизвестные и т. д.

Если система совместна и определена (единственное решение), то последнее уравнение содержит одно неизвестное. Найдя последнее неизвестное, из предыдущего уравнения находим еще одно - предпоследнее. Подставляя полученные величины неизвестных, мы последовательно найдем решение системы.

Элементарными преобразованиями системы линейных уравнений, используемыми для приведения системы к треугольному виду, являются следующие преобразования:

- перестановка местами двух уравнений;

- умножение обеих частей одного из уравнений на любое число, отличное от нуля;

- прибавление к обеим частям одного уравнения соответствующих частей другого уравнения, умноженных на любое число.

Элементарные преобразования переводят данную систему линейных алгебраических уравнений в эквивалентную систему.

Две системы называются эквивалентными, если всякое решение первой системы является решением другой системы и наоборот.

Вопрос №9: «Понятие вектора. Сложение векторов, умножение вектора на скаляр».

Векторы на плоскости и в пространстве. Вектором называется направленный отрезок (упорядоченная пара точек). К векторам относится также и нулевой вектор, начало и конец которого совпадают.

Векторы и линейные операции над ними. Линейными операциями над векторами называется сложение и умножение на число.

Суммой двух векторов a и b называется вектор c, направленный из начала вектора a в конец вектора b при условии, что начало b совпадет с концом вектора a. Если векторы заданы их разложениями по базисным ортам, то при сложении векторов складываются их соответствующие координаты.

Сумма любого конечного числа векторов может быть найдена по правилу многоугольника: чтобы построить сумму конечного числа векторов, достаточно совместить начало каждого последующего вектора с концом предыдущего и построить вектор, соединяющий начало первого вектора с концом последнего.

Вопрос №10: «Декартова и полярная система координат на плоскости».

Декартовы прямоугольные координаты на плоскости и в пространстве.

Системы координат на плоскости.

Д екартовы прямоугольные координаты (рис. 4.1). О - начало координат, Ох - ось абсцисс, Оy - ось ординат, - базисные векторы, - абсцисса точки M ( - проекция точки M на ось Ох параллельно оси Оy), - ордината точки M ( - проекция точки M на ось Oy параллельно оси Ox).

Системы координат в пространстве.

Д екартовы прямоугольные координаты (рис. 4.4). О - начало координат, Ох - ось абсцисс, Оy - ось ординат, Оz - ось аппликат , - базисные векторы. Oxy, Oxz, Oyz - координатные плоскости, - абсцисса точки M ( - проекция точки M на ось Ох параллельно плоскости Оyz), - ордината точки M ( - проекция точки M на ось Oy параллельно плоскости Oxz), - ордината точки M ( - проекция точки M на ось Oz параллельно плоскости Oxy).

П олярные координаты на плоскости. О - полюс, Ox - полярная ось, - полярный радиус, - полярный угол. Главные значения и : (иногда ).

Выражение декартовых прямоугольных координат через полярные:

Выражение полярных координат через декартовы прямоугольные: