Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ТПКС_Лаб3(семестр2)

.docx
Скачиваний:
15
Добавлен:
17.01.2020
Размер:
184.55 Кб
Скачать

МИНИСТЕРТСВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ РАДИОЭЛЕКТРОНИКИ

Кафедра КИТАМ

ОТЧЁТ

по лабораторной работе №3

по дисциплине «Технологии программирования компьютерных систем»

Выполнил: Проверил:

ст. гр. АКТСІу-17-1 ассистент каф. КИТАМ

Черкашин В.А. Гурин Д. В.

Харьков 2019

  1. ИССПОЛЬЗОВАНИЯ ЭФФЕКТОВ ОСВЕЩЕНИЯ

    1. Цель: Показать роботу освещения в OpenGL

3.2 Ход работы

#include <glad/glad.h>

#include <GLFW/glfw3.h>

#include <glm/glm.hpp>

#include <glm/gtc/matrix_transform.hpp>

#include <glm/gtc/type_ptr.hpp>

#include < shader_m.h>

#include < camera.h>

#include <assimp/Importer.hpp>

#include <assimp/scene.h>

#include <assimp/postprocess.h>

#include <SOIL/SOIL.h>

#include <iostream>

using namespace std;

void framebuffer_size_callback(GLFWwindow* window, int width, int height);

void mouse_callback(GLFWwindow* window, double xpos, double ypos);

void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);

void processInput(GLFWwindow* window);

const unsigned int SCR_WIDTH = 800;

const unsigned int SCR_HEIGHT = 600;

Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));

float lastX = SCR_WIDTH / 2.0f;

float lastY = SCR_HEIGHT / 2.0f;

bool firstMouse = true;

float deltaTime = 0.0f;

float lastFrame = 0.0f;

int main()

{

glfwInit();

glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);

glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);

glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);

GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);

if (window == NULL)

{

std::cout << "Failed to create GLFW window" << std::endl;

glfwTerminate();

return -1;

}

glfwMakeContextCurrent(window);

glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);

glfwSetCursorPosCallback(window, mouse_callback);

glfwSetScrollCallback(window, scroll_callback);

glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);

if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))

{

std::cout << "Failed to initialize GLAD" << std::endl;

return -1;

}

glEnable(GL_DEPTH_TEST);

Shader ourShader("7.4.camera.vs", "7.4.camera.fs");

Shader ourShader1("1.vs", "1.fs");

Assimp::Importer importer;

const aiScene* scene = importer.ReadFile("models/robotic_arm.obj", aiProcess_Triangulate | aiProcess_FlipUVs | aiProcess_CalcTangentSpace);

// check for errors

if (!scene || scene->mFlags & AI_SCENE_FLAGS_INCOMPLETE || !scene->mRootNode) // if is Not Zero

{

cout << "ERROR::ASSIMP:: " << importer.GetErrorString() << endl;

return 0;

}

vector<float> vertices;

for (unsigned int i = 0; i < scene->mNumMeshes; i++)

{

for (unsigned int j = 0; j < scene->mMeshes[i]->mNumVertices; j++) {

vertices.push_back(scene->mMeshes[i]->mVertices[j].x);

vertices.push_back(scene->mMeshes[i]->mVertices[j].y);

vertices.push_back(scene->mMeshes[i]->mVertices[j].z);

vertices.push_back(0.0f);

vertices.push_back(0.0f);

}

}

unsigned int VBO, VAO;

glGenVertexArrays(1, &VAO);

glGenBuffers(1, &VBO);

glBindVertexArray(VAO);

glBindBuffer(GL_ARRAY_BUFFER, VBO);

glBufferData(GL_ARRAY_BUFFER, vertices.size() * sizeof(float), &vertices[0], GL_STATIC_DRAW);

glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)0);

glEnableVertexAttribArray(0);

glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (float*)(2 * sizeof(float)));

glEnableVertexAttribArray(1);

glBindBuffer(GL_ARRAY_BUFFER, 0);

glBindVertexArray(0);

GLuint texture1;

glGenTextures(1, &texture1);

glBindTexture(GL_TEXTURE_2D, texture1); /

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

int width, height;

unsigned char* image = SOIL_load_image("container.jpg", &width, &height, 0, SOIL_LOAD_RGB);

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, image);

glGenerateMipmap(GL_TEXTURE_2D);

SOIL_free_image_data(image);

glBindTexture(GL_TEXTURE_2D, 0);

while (!glfwWindowShouldClose(window))

{

float currentFrame = glfwGetTime();

deltaTime = currentFrame - lastFrame;

lastFrame = currentFrame;

processInput(window);

glClearColor(0.2f, 0.3f, 0.3f, 1.0f);

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

ourShader.use();

glActiveTexture(GL_TEXTURE0);

glBindTexture(GL_TEXTURE_2D, texture1);

glUniform1i(glGetUniformLocation(ourShader.ID, "ourTexture;"), 1);

glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);

glm::mat4 view = camera.GetViewMatrix();

ourShader.setMat4("projection", projection);

ourShader.setMat4("view", view);

glm::mat4 model = glm::mat4(1.0f);

model = glm::translate(model, glm::vec3(0.0f, 0.0f, 0.0f));

model = glm::scale(model, glm::vec3(0.001f, 0.001f, 0.001f));

ourShader.setMat4("model", model);

glBindVertexArray(VAO);

glDrawArrays(GL_TRIANGLES, 0, vertices.size());

glfwSwapBuffers(window);

glfwPollEvents();

}

glfwTerminate();

return 0;

}

void processInput(GLFWwindow * window)

{

if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)

glfwSetWindowShouldClose(window, true);

if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)

camera.ProcessKeyboard(FORWARD, deltaTime);

if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)

camera.ProcessKeyboard(BACKWARD, deltaTime);

if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)

camera.ProcessKeyboard(LEFT, deltaTime);

if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)

camera.ProcessKeyboard(RIGHT, deltaTime);

}

void framebuffer_size_callback(GLFWwindow * window, int width, int height)

{

glViewport(0, 0, width, height);

}

void mouse_callback(GLFWwindow * window, double xpos, double ypos)

{

if (firstMouse)

{

lastX = xpos;

lastY = ypos;

firstMouse = false;

}

float xoffset = xpos - lastX;

float yoffset = lastY - ypos;

lastX = xpos;

lastY = ypos;

camera.ProcessMouseMovement(xoffset, yoffset);

}

void scroll_callback(GLFWwindow * window, double xoffset, double yoffset)

{

camera.ProcessMouseScroll(yoffset);

}

Коды шейдеров

#version 330 core

layout (location = 0) in vec3 aPos;

layout (location = 1) in vec3 aNormal;

layout (location = 2) in vec2 aTexCoords;

out vec3 FragPos;

out vec3 Normal;

out vec2 TexCoords;

uniform mat4 model;

uniform mat4 view;

uniform mat4 projection;

void main()

{

FragPos = vec3(model * vec4(aPos, 1.0));

Normal = mat3(transpose(inverse(model))) * aNormal;

TexCoords = aTexCoords;

gl_Position = projection * view * vec4(FragPos, 1.0);

}

#version 330 core

out vec4 FragColor;

struct Material {

sampler2D diffuse;

sampler2D specular;

float shininess;

};

struct Light {

//vec3 position;

vec3 direction;

vec3 ambient;

vec3 diffuse;

vec3 specular;

};

in vec3 FragPos;

in vec3 Normal;

in vec2 TexCoords;

uniform vec3 viewPos;

uniform Material material;

uniform Light light;

void main()

{

// ambient

vec3 ambient = light.ambient * texture(material.diffuse, TexCoords).rgb;

// diffuse

vec3 norm = normalize(Normal);

// vec3 lightDir = normalize(light.position - FragPos);

vec3 lightDir = normalize(-light.direction);

float diff = max(dot(norm, lightDir), 0.0);

vec3 diffuse = light.diffuse * diff * texture(material.diffuse, TexCoords).rgb;

// specular

vec3 viewDir = normalize(viewPos - FragPos);

vec3 reflectDir = reflect(-lightDir, norm);

float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);

vec3 specular = light.specular * spec * texture(material.specular, TexCoords).rgb;

vec3 result = ambient + diffuse + specular;

FragColor = vec4(result, 1.0);

}

#version 330 core

layout (location = 0) in vec3 aPos;

uniform mat4 model;

uniform mat4 view;

uniform mat4 projection;

void main()

{

gl_Position = projection * view * model * vec4(aPos, 1.0);

}

#version 330 core

out vec4 FragColor;

void main()

{

FragColor = vec4(1.0); // set alle 4 vector values to 1.0

}

ВЫВОДЫ

В ходе выполенения лабараторной работы была построена openGL программа которая реализует модель освещения по Фонгу (Phong). Модель Фонга состоит из трех главных компонентов: фонового (ambient), рассеянного/диффузного (diffuse) и бликового (specular). Ниже вы можете видеть, что они из себя представляют:

Рис 3.1 – Компоненты модели по Фонгу.

Рис 3.2 – Результат работы программы.

Рис 3.3 – Вид с другой стороны