Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
К1.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
167.68 Кб
Скачать

Получение наночастиц из пересыщенных паров металлов

В основе метода лежит классическая теория нуклеации , основанная на предположении, что зарождающиеся кластеры новой фазы (наночастицы) описываются моделью сферической жидкой капли. Существует несколько вариантов установок для получения наночастиц (кластеров), различающихся способом испарения металла; это может быть лазерное испарение [11, 12], термическое испарение, дуговой разряд, плазма [13] , солнечная энергия [14]; в каждом из перечисленных методов имеются варианты установок, отличающиеся техническими решениями тех или иных узлов (недавний обзор см. в [15]); кроме того, для тех же целей может быть использован лазерный фотолиз летучих металлсодержащих соединений (чаще всего – карбонилов металлов). В любом из перечисленных методов испарения металла может быть два окончания – исследование физико-химических характеристик наночастиц в газовой фазе (до осаждения на подложку) или изучение свойств порошка или пленки, получающихся в результате осаждения паров металла на подложку; отдельный (и достаточно подробно изученный) вопрос – осаждение в матрицу, чаще всего – инертных газов. Образующиеся при этом наночастицы химически очень чистые (однородные по составу), не имеют пор и других морфологических неоднородностей.

Термическое испарение. В классическом варианте метода навеску металла или сплава нагревают в вольфрамовой лодочке в токе аргона или гелия; за счет межатомных столкновений с атомами инертного газа атомы испаряемого металла теряют свою кинетическую энергию, агрегируют в наночастицы и конденсируются в виде ультрадисперсного порошка на охлаждаемой подложке. Метод позволяет контролировать размеры частиц в интервале 3-100 нм, меняя скорость испарения, давление газа и его природу, температуру подложки. Как правило, перед тем, как открыть установку и вынуть образец, наночастицы пассивируют пропусканием в течение нескольких минут инертного газа, обогащенного кислородом.

 

Метод «молекулярных пучков».

Исторически индивидуальные магнитные наночастицы были впервые получены методом молекулярных пучков [16, 17]; в этом методе в пучке получаются в значительной степени «свободные» кластеры (наночастицы), и для выяснения собственных, не искаженных влиянием внешней среды, магнитных свойств таких частиц и для понимания фундаментальных основ физики магнитных кластеров этот метод не имел себе равных.

Интерпретация экспериментов с кластерными пучками предполагает справедливость классической теории магнетизма в применении к наночастицам. Последняя предсказывает, что магнитный момент наночастицы (в котором возможна релаксация) обратно пропорционален его температуре, последняя же зависит от времени пребывания наночастицы в камере роста (tres). Так при рассмотрении наночастиц кобальта одинакового размера, прошедших через магнит с фиксированными значениями магнитного поля и его градиента, оказывается, что экспериментально наблюдаемый магнитный момент <эксп> увеличивается с ростом tres. Чем больше tres, тем сильнее отклоняются наночастицы магнитным полем. Однако при достаточно больших временах пребывания в камере роста <эксп> достигает максимального значения, тем большего, чем ниже температура наночастицы. Более того, в полном согласии с теорией наблюдаемый эффективный момент растет обратно пропорционально температуре.

Несмотря на трудности интерпретации, эксперименты с молекулярными пучками дают уникальную возможность определить зависимость магнитных параметров от количества атомов в наночастице. В работе [16] показаны зависимости среднего магнитного момента (на атом) <эфф> от числа атомов N в наночастице при постоянной температуре, эти данные приведены для кластеров Fe, Co и Ni. С уменьшением размера наночастицы его удельный магнитный момент растет. Эта тенденция сильнее выражена для Ni, что обусловлено, возможно, его более высокой плотностью валентных электронов [16].

В работах [16, 17] наночастицы кобальта с числом атомов N от 56 до 215 при температуре Tvib = 97 K ведут себя как суперпарамагнитные частицы с <эфф> = 2.24Б, что также больше «объемного» значения намагниченности.

Таким образом, из эксперимента следует, что эффективный магнитный момент атома в наночастицах переходных 3d металлов может быть больше аналогичной величины для атома в обычном металле. Возможное объяснение состоит в том, что магнитный момент атома на поверхности кластера (с меньшим координационным числом) нужно рассматривать как локализованный, а не в рамках зонной теории, где, как известно, магнитный момент редуцируется.

Интересно заметить, что для самых маленьких наночастиц Ni вплоть до максимальных исследованных температур магнитный момент практически не меняется. Для кластеров (наночастиц) большего размера даже выше температуры Кюри для объемной фазы (631 К) существует остаточный магнитный момент. Так для наночастиц Ni550-600 магнитный момент при 631 К составляет 25% от низкотемпературного значения 0.6Б. Таким образом, из экспериментов с молекулярными пучками следует, что магнитный порядок в наночастицах может сохраняться при более высоких температурах, чем в макроскопических образцах. Для кобальта (Тс  1400 К) магнитный момент атомов в наночастицах (N = 50600) слабо меняется до температур 1000 К, все время оставаясь больше «объемного» значения. Более сложный вид имеют температурные зависимости среднего магнитного момента для наночастиц железа. Возможная причина состоит в особенностях фазовой диаграммы железа и структурных переходах, усложняющих картину магнитного поведения.

Таким образом, в целом можно сказать, что опыты с молекулярными пучками указывают на увеличение температуры Кюри в магнитных наночастицах по сравнению с объемной фазой; из результатов работ [16, 17] следует, что наночастицы переходных 3d металлов (Co, Ni, Fe), независимо от числа атомов в наночастице, при достаточно высоких температурах (100 К) проявляют суперпарамагнитные свойства с эффективным моментом атома, большим «объемного» значения. Вплоть до самых высоких температур (1000 К) не обнаружен переход в обычное парамагнитное состояние.

Еще более необычны свойства наночастиц редкоземельных элементов Gd [16], Tb [18]. Как было сказано выше, в опытах с молекулярными пучками наночастицы магнитных металлов ведут себя либо как суперпарамагнитные частицы, либо как частицы с «замороженным» магнитным моментом. Наночастицы гадолиния обнаруживают оба типа поведения, в зависимости от числа атомов в наночастице [17]. В эксперименте всегда наблюдалось [19] два типа кластеров (одной массы). Одни вели себя суперпарамагнитно, другие  как кластеры с «замороженным» моментом. Пока не ясно, определяется это разделение существованием структурных или магнитных изомеров одного и того же кластера (наночастицы).

В работах [16, 17, 19] исследовались кластеры гадолиния с числом атомов N от 11 до 92. Суперпарамагнитные свойства даже при низких температурах демонстрируют кластеры Gd22, Gd30 и Gd33. Напротив, отчетливо выраженные «замороженные» свойства проявляют при 100 К кластеры Gd1116, Gd1921 , Gd2326, Gd53, Gd54 и некоторые другие. С повышением температуры до комнатной некоторые кластеры становятся суперпарамагнитными (например, Gd17), другие остаются «замороженными» (Gd1216, Gd1921, Gd23, Gd26, Gd55). При 800200 К все изученные кластеры гадолиния становятся суперпарамагнитными. Заметим, что при этом внутри кластеров моменты остаются упорядоченными, т.е. температура Кюри для гадолиниевых кластеров существенно выше, чем в объемной фазе (293 К). С другой стороны эффективный магнитный момент (на атом) во всех кластерах Gd заметно меньше (по-крайней мере в два раза) объемного значения 7Б.

Подобно кластерам гадолиния ведут себя кластеры тербия [18]. Большинство из них при низких температурах имеют «замороженный» магнитный момент, другие остаются суперпарамагнитными. При комнатной температуре подавляющее большинство кластеров (наночастиц) суперпарамагнитны. На примере тербия изучено влияние присоединения атома кислорода к металлическому кластеру. За исключением Tb22 «окисление» кластера не меняет его магнитных свойств. Однако магнитный момент суперпарамагнитного кластера Tb22, при присоединении к последнему кислорода, «замораживается» при Tvib  250 K.

В молекулярных пучках исследовались наночастицы (кластеры) и некоторых других элементов [16]: хрома (N = 931), палладия (N = 100120), ванадия (N = 899). Все они оказались парамагнитными[3].

Практического значения для получения магнитных наноматериалов метод молекулярных пучков не имеет.

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]