
- •Федеральное агентство по образованию
- •Рецензенты:
- •Предисловие
- •Введение
- •Часть I. Основные классы химических соединений, входящие в состав живой материи глава 1. Белки
- •1.1. Функции белков
- •1.2. Аминокислотный состав белков
- •1.3.Структурная организация белков
- •1.4. Физико-химические свойства белков
- •1.5. Классификация белков
- •Вопросы и задачи
- •Рекомендуемая литература
- •Глава 2. Нуклеиновые кислоты
- •2.1. Химический состав нуклеиновых кислот
- •2.2. Структура нуклеиновых кислот
- •2.2.1. Структура днк
- •2.2.2. Структура рнк
- •Вопросы и задачи
- •Рекомендуемая литература
- •Глава 3. Ферменты
- •3.1. Классификация ферментов и номенклатура
- •3.2. Активный центр ферментов
- •3.3. Механизм действия ферментов
- •3.4. Кинетика ферментативных реакций
- •Вопросы и задачи
- •Рекомендуемая литература
- •Глава 4. Витамины
- •4.1. Классификация витаминов
- •4.2. Витамины, растворимые в жирах
- •4.3. Витамины, растворимые в воде
- •4.4. Витаминоподобные вещества
- •4.5. Антивитамины
- •Вопросы и задачи
- •Рекомендуемая литература
- •Глава 5. Углеводы
- •5.1. Классификация углеводов
- •5.2. Моносахариды
- •Моносахариды
- •5.3. Олигосахариды
- •5.4. Полисахариды
- •Вопросы и задачи
- •Рекомендуемая литература
- •Глава 6. Липиды
- •6.1. Классификация липидов
- •6.2. Жирные кислоты
- •6.3. Глицериды
- •6.4. Воска
- •6.5. Фосфолипиды
- •6.6. Гликолипиды (гликосфинголипиды)
- •6.7. Стероиды
- •Вопросы и задачи
- •Рекомендуемая литература
- •Глава 7. Гормоны
- •7.1. Классификация гормонов
- •7.2. Гормоны гипоталамуса
- •7.3. Гормоны гипофиза
- •7.3.3. Гормоны передней доли гипофиза.
- •7.4. Гормоны паращитовидных желез (паратгормоны)
- •7.5. Гормоны щитовидной железы
- •7.6. Гормоны поджелудочной железы
- •7.7. Гормоны надпочечников
- •7.8. Половые гормоны
- •7.9. Гормоны вилочковой железы
- •7.10. Гормоны насекомых
- •Вопросы и задачи
- •Рекомендуемая литература
- •Глава 8. Молекулярные механизмы гормонального сигнала
- •8.1. Механизм действия стероидных гормонов
- •8.2. Механизм действия гормонов пептидной природы
- •Вопросы и задачи
- •Рекомендуемая литература
- •Часть II. Обмен веществ и энергии в организме
- •Глава 9. Обмен нуклеиновых кислот
- •9.1. Синтез пуриновых нуклеотидов.
- •9.2. Синтез пиримидиновых нуклеотидов
- •9.3. Биосинтез нуклеиновых кислот (биосинтез днк)
- •Распад нуклеиновых кислот
- •Вопросы и задачи
- •Рекомендуемая литература
- •Глава 11. Обмен белков
- •10.1. Пути распада белков
- •10.2. Судьба всосавшихся аминокислот
- •10.3. Обезвреживание аммиака в организме
- •10.4. Биосинтез белка
- •Генетический кодовый «словарь»
- •10.4.1. Этапы синтеза белка
- •10.5. Регуляция синтеза белка
- •Вопросы и задачи
- •Рекомендуемая литература
- •Глава 11. Обмен углеводов
- •11.1. Переваривание и всасывание углеводов
- •11.2. Синтез и распад гликогена
- •11.3. Окисление глюкозы
- •11.3.1. Гликолиз
- •Глюкоза Молочная кислота (2 мол)
- •11.3.2. Цикл Кребса
- •11.3.3. Цепь переноса электронов
- •11.4. Глюконеогенез
- •11.5. Пентозофосфатный путь окисления глюкозы
- •Вопросы и задачи
- •Рекомендуемая литература
- •Глава 12. Обмен липидов
- •12.1. Переваривание и всасывание липидов
- •12.2. Окисление жирных кислот
- •12.3. Биосинтез жирных кислот
- •12.3.1. Биосинтез насыщенных жирных кислот
- •12.3.2. Биосинтез ненасыщенных жирных кислот
- •12.3.3. Синтез триглицеридов
- •12.3.4. Биосинтез холестерина
- •12.4. Нарушения липидного обмена
- •12.4.1. Ожирение
- •Вопросы и задачи
- •Рекомендуемая литература
- •Глава 13. Биологическое окисление
- •13.1. Ферменты, катализирующие окислительно-восстановительные реакции
- •13.2. Классификация процессов биологического окисления
- •13.2.1. Свободное окисление
- •13.2.2. Окисление, сопряженное с фосфорилированием адф
- •Вопросы и задачи
- •Рекомендуемая литература
- •Глава 14. Взаимосвязь процессов обмена веществ
- •Вопросы и задачи
- •Рекомендуемая литература
- •Библиографический список
- •Глава12. Обмен липидов 127
- •Глава13 . Биологическое окисление 141
- •Глава14. Взаимосвязь обмена веществ 145
12.3.2. Биосинтез ненасыщенных жирных кислот
Ненасыщенные жирные кислоты необходимы организму для синтеза полярных липидов, входящих в состав мембран, и нормального протекания обменных процессов.
Пальмитоолеиновая и олеиновая кислоты синтезируются из пальмитиновой и стеариновой кислот.
Эти превращения протекают в микросомах клеток печени и жировой ткани при участии молекулярного кислорода, восстановленной системы пиримидиновых нуклеотидов и цитохрома b5.
Однако в организме млекопитающих, в том числе и человека, не могут образовываться, например, линолевая и линоленовая кислоты. Они относятся к категории незаменимых и должны поступать с пищей. У растений насыщенные жирные кислоты превращаются в ненасыщенные с помощью дестуразной ферментной системы, которая вводит двойную связь в молекулу насыщенной кислоты независимо от ее углеродной цепочки.
12.3.3. Синтез триглицеридов
Организм синтезирует нейтральные жиры с целью пополнения запасов. Синтез триглицеридов происходит из глицерина и жирных кислот. Биосинтез триглицеридов протекает через образование глицерол-3-фосфата как промежуточного соединения. Глицерол-3-фосфат последовательно ацилируется двумя молекулами КоА-производного жирной кислоты, в результате образуется фосфатидная кислота (рис. 43).
Рис. 43. Биосинтез триглицеридов
Далее фосфатидная кислота гидролизуется фосфатидат-фосфогидролазой до 1,2-диглицерида (1,2-диацилглицерола). Затем 1,2-диглицерид ацилируется третьей молекулой ацил-КоА и превращается в триглицерид (триацилглицерол).
Синтез глицерофосфолипидов.
Глицерофосфолипиды синтезируются во всех клетках (исключая зрелые эритроциты). Их активный синтез имеет место в стенке кишечника, печени, почках, мозге, мышечной ткани.
Фосфоглицерины различаются лишь природой спиртового остатка, связанного фосфоэфирной связью с фосфатидной кислотой. Для участия в синтезе фосфолипидов эти спирты предварительно «активируются» в ходе двустадийного процесса. На первой стадии они фосфорилируется с помощью АТФ:
На второй стадии фосфорилированные спирты реагируют с цитидинтрифосфатом (ЦТФ аналог АТФ, в нем адениловый остаток заменен на цитозиновый):
В конечной реакции синтеза фосфотидилэтаноламина и фосфотидилхолина участвует 1,2-диглицерид, образующийся под действием фосфатазы на фосфатидную кислоту:
12.3.4. Биосинтез холестерина
Большинство клеток нашего организма (которые не утратили ядро) способны синтезировать холестерин. Печень и в меньшей степени тонкий кишечник – наиболее активные продуценты холестерина. Он является необходимым компонентом плазматических мембран и служит предшественником желчных кислот и стероидных гормонов.
Единственным исходным материалом служит ацетил-КоА. В синтезе холестерина выделяют три основные стадии: I – превращение активного ацетата в мевалоновую кислоту; II – образование сквалена из меваоновой кислоты; III циклизация сквалена в холестерин.
I стадия
Первая реакция синтеза холестерина представляет собой взаимодействие двух молекул ацетил-S-КоА под влиянием ацетоацетил-КоА-тиолазы, образуя ацетоацетил-S-КоА:
Полученный ацетоацетил-S-КоА конденсируется с третьей молекулой активного ацетата при участии специальной синтетазы, образуя -метил--гидрокси-глутарил-S-КоА:
Следующая реакция восстановления -метил--гидрокси-глутарил-S-КоА под влиянием специальной редуктазы с образованием мевалоновой кислоты:
II стадия
Во второй стадии синтеза холестерола мевалоновая кислота превращается в сквален. Для этого мевалоновая кислота фосфорилируется с участием трех молекул АТФ, образуя 3-фосфо-5-пирофосфомевалоновую кислоту:
Нестабильная молекула 3-фосфо-5-пирофосфомевалоновой кислоты декарбоксилируется и дефосфорилируется, формируя непредельное соединение – изопентенил-пирофосфат (С5):
Изопентенил-пирофосфат изомеризуется, образуя 3,3-диметилаллил-пирофосфат(С5):
Конденсация двух 5-углеродных соединений (изопентенил-пирофосфат + 3,3-диметилаллил-пирофосфат) приводит к получению геранилпирофосфата (С5 + С5 = С10). Дальнейшая конденсация геранилпирофосфата с изопентенил-пирофосфатом (С10 + С5) дает образование фарнезил-пирофосфата (С15). В свою очередь, конденсация двух молекул фарнезил-пирофосфата заканчивается получением молекулы сквалена (С30).
III стадия
На заключительной стадии следует циклизация сквалена при участии НАДФН+ + Н+, молекулярного кислорода и сквален-синтетазы с образованием ланостерина (С30), который уже имеет стероидную циклическую структуру. Ланостерин под влиянием ряда ферментов теряет три метильные группы и трансформируется в холестерол: