
- •Федеральное агентство по образованию
- •Рецензенты:
- •Предисловие
- •Введение
- •Часть I. Основные классы химических соединений, входящие в состав живой материи глава 1. Белки
- •1.1. Функции белков
- •1.2. Аминокислотный состав белков
- •1.3.Структурная организация белков
- •1.4. Физико-химические свойства белков
- •1.5. Классификация белков
- •Вопросы и задачи
- •Рекомендуемая литература
- •Глава 2. Нуклеиновые кислоты
- •2.1. Химический состав нуклеиновых кислот
- •2.2. Структура нуклеиновых кислот
- •2.2.1. Структура днк
- •2.2.2. Структура рнк
- •Вопросы и задачи
- •Рекомендуемая литература
- •Глава 3. Ферменты
- •3.1. Классификация ферментов и номенклатура
- •3.2. Активный центр ферментов
- •3.3. Механизм действия ферментов
- •3.4. Кинетика ферментативных реакций
- •Вопросы и задачи
- •Рекомендуемая литература
- •Глава 4. Витамины
- •4.1. Классификация витаминов
- •4.2. Витамины, растворимые в жирах
- •4.3. Витамины, растворимые в воде
- •4.4. Витаминоподобные вещества
- •4.5. Антивитамины
- •Вопросы и задачи
- •Рекомендуемая литература
- •Глава 5. Углеводы
- •5.1. Классификация углеводов
- •5.2. Моносахариды
- •Моносахариды
- •5.3. Олигосахариды
- •5.4. Полисахариды
- •Вопросы и задачи
- •Рекомендуемая литература
- •Глава 6. Липиды
- •6.1. Классификация липидов
- •6.2. Жирные кислоты
- •6.3. Глицериды
- •6.4. Воска
- •6.5. Фосфолипиды
- •6.6. Гликолипиды (гликосфинголипиды)
- •6.7. Стероиды
- •Вопросы и задачи
- •Рекомендуемая литература
- •Глава 7. Гормоны
- •7.1. Классификация гормонов
- •7.2. Гормоны гипоталамуса
- •7.3. Гормоны гипофиза
- •7.3.3. Гормоны передней доли гипофиза.
- •7.4. Гормоны паращитовидных желез (паратгормоны)
- •7.5. Гормоны щитовидной железы
- •7.6. Гормоны поджелудочной железы
- •7.7. Гормоны надпочечников
- •7.8. Половые гормоны
- •7.9. Гормоны вилочковой железы
- •7.10. Гормоны насекомых
- •Вопросы и задачи
- •Рекомендуемая литература
- •Глава 8. Молекулярные механизмы гормонального сигнала
- •8.1. Механизм действия стероидных гормонов
- •8.2. Механизм действия гормонов пептидной природы
- •Вопросы и задачи
- •Рекомендуемая литература
- •Часть II. Обмен веществ и энергии в организме
- •Глава 9. Обмен нуклеиновых кислот
- •9.1. Синтез пуриновых нуклеотидов.
- •9.2. Синтез пиримидиновых нуклеотидов
- •9.3. Биосинтез нуклеиновых кислот (биосинтез днк)
- •Распад нуклеиновых кислот
- •Вопросы и задачи
- •Рекомендуемая литература
- •Глава 11. Обмен белков
- •10.1. Пути распада белков
- •10.2. Судьба всосавшихся аминокислот
- •10.3. Обезвреживание аммиака в организме
- •10.4. Биосинтез белка
- •Генетический кодовый «словарь»
- •10.4.1. Этапы синтеза белка
- •10.5. Регуляция синтеза белка
- •Вопросы и задачи
- •Рекомендуемая литература
- •Глава 11. Обмен углеводов
- •11.1. Переваривание и всасывание углеводов
- •11.2. Синтез и распад гликогена
- •11.3. Окисление глюкозы
- •11.3.1. Гликолиз
- •Глюкоза Молочная кислота (2 мол)
- •11.3.2. Цикл Кребса
- •11.3.3. Цепь переноса электронов
- •11.4. Глюконеогенез
- •11.5. Пентозофосфатный путь окисления глюкозы
- •Вопросы и задачи
- •Рекомендуемая литература
- •Глава 12. Обмен липидов
- •12.1. Переваривание и всасывание липидов
- •12.2. Окисление жирных кислот
- •12.3. Биосинтез жирных кислот
- •12.3.1. Биосинтез насыщенных жирных кислот
- •12.3.2. Биосинтез ненасыщенных жирных кислот
- •12.3.3. Синтез триглицеридов
- •12.3.4. Биосинтез холестерина
- •12.4. Нарушения липидного обмена
- •12.4.1. Ожирение
- •Вопросы и задачи
- •Рекомендуемая литература
- •Глава 13. Биологическое окисление
- •13.1. Ферменты, катализирующие окислительно-восстановительные реакции
- •13.2. Классификация процессов биологического окисления
- •13.2.1. Свободное окисление
- •13.2.2. Окисление, сопряженное с фосфорилированием адф
- •Вопросы и задачи
- •Рекомендуемая литература
- •Глава 14. Взаимосвязь процессов обмена веществ
- •Вопросы и задачи
- •Рекомендуемая литература
- •Библиографический список
- •Глава12. Обмен липидов 127
- •Глава13 . Биологическое окисление 141
- •Глава14. Взаимосвязь обмена веществ 145
7.6. Гормоны поджелудочной железы
Поджелудочная железа относится к железам со смешанной секрецией. Внешнесекреторная функция заключается в синтезе ряда ключевых ферментов пищеварения (амилазы, липазы, трипсина и др.). Внутриклеточную функцию выполняют панкреатические островки (островки Лангерганса), состоящие из клеток разного типа (А-, В-, D-, F-клетки). А-клетки (или -клетки) являются местом выработки гормона глюкана, В-клетки (-клетки) – инсулина, D-клетки (-клетки) – соматостатина, F-клетки – панкреатического пептида.
Инсулин. Молекула инсулина состоит из 51 аминокислотного остатка и представляет собой объединение двух полипептидных цепей: А-цепи, содержащей 21 аминокислотный остаток, В-цепи из 30. Обе цепи связаны дисульфидными связями. Полипептидный остов молекулы инсулина образует более сложные вторичную и третичную структуры.
В физиологической регуляции синтеза инсулина доминирующую роль играет концентрация глюкозы в крови, повышение содержания глюкозы в крови вызывает увеличение секреции инсулина, а снижение – замедление секреции. На секрецию инсулина оказывают влияние, кроме того, электролиты (особенно ионы кальция), аминокислоты, глюкагон и секретин.
Инсулин синтезируется из проинсулина и может существовать в нескольких формах, различающихся по биологическим, иммунологическим и физико-химическим свойствам.
Биологический эффект инсулина связан с влиянием на углеводный, белковый, липидный обмен, обмен нуклеиновых кислот. Инсулин стимулирует проникновение и утилизацию глюкозы в тканях, прежде всего «инсулинзависимых»; воздействует на различные пути метаболизма глюкозы – окисление, использование на биосинтез гликогена и гликозаминогликанов, синтез жирных кислот, нуклеотидов и др.
Инсулин индуцирует и повышает активность ключевых ферментов тканевого метаболизма глюкозы – гексокиназы и глюкокиназы, стимулирующих фосфорилирование глюкозы и, следовательно, использование глюкозы в процессах клеточного метаболизма.
Инсулин стимулирует биосинтез гликогена и задерживает его распад. Под действием гормона происходит активизация ключевого фермента глюкогенеза – гликогенсинтетазы, одновременно при действии инсулина происходит снижение активности основного фермента фосфорилитического распада гликогена – гликогенфосфорилазы.
Для ключевых ферментов гликолиза 6-фосфофруктокиназы и пируваткиназы инсулин является стимулятором. Под влиянием инсулина повышается синтез и активность глюкозо-6-фосфатдегидрогеназы, транскетолазы и других ферментов пентозного цикла превращения глюкозы.
Важную роль инсулин играет в регуляции обмена липидов, являясь одним из основных липогенетических гормонов. Инсулин стимулирует биосинтез жирных кислот в клетках жирового депо. Кроме того, инсулин способствует биосинтезу нейтрального жира в жировых клетках благодаря активному расщеплению глюкозы с образованием глицерофосфата. Гормон также стимулирует накопление жира в жировых депо, так как является антагонистом различных липолитических гормонов – адреналина, СТГ, АКТГ, глюкагона и др.
Инсулин является анаболитическим гормоном в отношении обмена белков и нуклеиновых кислот; в тканях стимулирует биосинтез нуклеотидов и нуклеиновых кислот.
Повышение образования нуклеотидов связано с активизацией окисления глюкозы пентозофосфатном цикле и обеспечением данного процесса рибозо-5-фосфатом, с другой – непосредственным усилением биосинтеза пуриновых азотистых оснований. Инсулин в тканях также повышает активность РНК-полимеразы и ДНК-полимеразы, стимулируя биосинтез ДНК и всех типов РНК.
Инсулин усиливает транспорт аминокислот через клеточные мембраны, повышает биосинтез различных аминоацил-тРНК-синтетаз ферментов, активирующих аминокислоты, вступающие на путь синтеза белка. Кроме того, гормон усиливает процессы трансляции, благодаря индукции синтеза специфического белка – фактора трансляции, который является белком, способствующим объединению рибосом в полисомы.
При недостаточном синтезе инсулина развивается специфическое заболева- ние – сахарный диабет, для которого характерно нарушение метаболитических процессов: гипергликемия (увеличение уровня глюкозы в крови), гликозурия (выделение глюкозы с мочой), кетонурия (избыточный синтез кетоновых тел) и др. У больных наблюдается постоянная жажда и чувство голода, быстрая утомляемость и другие симптомы, связанные с глубокими нарушениями в метаболизме углеводов, липидов, аминокислот, белков, НК, водно-солевого и энергетического обмена. Клинические симптомы при данном заболевании могут быть обусловлены не только отсутствием синтеза инсулина; могут иметь место и молекулярные дефекты: нарушение структуры инсулина или ферментативного превращения проинсулина в инсулин, или возможна потеря рецепторами клеток-мишеней способности соединяться с молекулой инсулина.
Глюкагон. Глюкагон представляет собой одноцепочечный полипептид, состоящий из 29 аминокислот с молекулярной массой 3,5 кД.
Биологические эффекты глюкагона весьма многообразны. Он является сильным гипергликемическим фактором, оказывающим свое влияние в печени и не действующим на мышцы и другие ткани. Глюкагон, влияя на активность фосфорилазы и гликогенсинтетазы, оказывает двойное действие: ускоряет распад гликогена и ингибирует его синтез, в результате чего гликоген превращается в печени в глюкозу.
Глюкагон стимулирует также продукцию глюкозы из аминокислот путем индукции цАМФ-зависимого синтеза ключевых ферментов глюконеогенеза.
Глюкагон обладает также выраженной липолитической активностью, что также обусловлено цАМФ-зависимой активизацией липазы в клетках жировой ткани с освобождением свободных жирных кислот и глицерина.
В печени глюкагон тормозит синтез жирных кислот и холестерина из ацетил-КоА и стимулирует кетогенез, активирует печеночную липазу.
В почках глюкагон увеличивает клубочковую фильтрацию и ускоряет ток крови, что приводит к повышению экскреции Na+, K+, Cl-, неорганических фосфатов и мочевой кислоты.
Биосинтез и секреция глюкагона контролируются главным образом концентрацией глюкозы по принципу обратной связи. Таким же свойством обладают аминокислоты и свободные жирные кислоты. На секрецию глюкагона оказывают влияние также инсулин и инсулиноподобные факторы роста.