- •Очистные агенты
- •В. И. Зварыгин
- •Часть 1 очистные агенты
- •Глава 1
- •Коллоидные растворы
- •.Структура воды
- •1.2 Структура коллоидных растворов
- •1.2 Прочность структуры.
- •1.2 Вязкость воды
- •1.3 Стабильность бурового раствора
- •1.4 Водоотдача
- •1.5 Показатель фильтрации. Приборы для определения показателя фильтрации
- •1.9. Плотность промывочной жидкости. Приборы для определения плотности
- •1.7 Содержание абразивных частиц в буровых растворах. Прибор.
- •Глава 2 глинистые растворы. Растворы Общие сведения
- •2.1. Структурообразователи.
- •2.2. Структурирование глинистых растворов
- •Структурирование промывочной жидкости за счет диспергирования тердой фазы.
- •2.3. Ингибирующие глинистые растворы.
- •2.4 Неингибирующие глинистые растворы.
- •2.5. Активация и дезактивация глинистых частиц.
- •2.6. Технические средства для приготовления глинистых растворов
- •Глава 3 полимеры и полимерные промывочные жидкости
- •3.1. Полимеры – структурообразователи
- •Состав древесины
- •3.2Свойства и функции полимеров
- •3.3 Модифицирующие полимерполисолевые растворы
- •3.3.2. Экспериментальные исследования.
- •3.4. Зарубежные реагенты для приготовления промывочных жидкостей Основная классификация реагентов компании “бдс”:
- •3.5 Дезактивация дисперсной фазы гидрофобными веществами (пав, полимерами, маслами)
- •3.6 Полимерные растворы
- •3.7 Технические средства для приготовления полимерных растворов
- •Общая схема выбора промывочной жидкости
- •Глава4 растворы электролитов
- •4.1Истинные растворы
- •Теплота растворения электролитов
- •4.2Растворимость и скорость растворения электролитов.
- •Растворимость электролитов
- •Скорость растворения электролитов.
- •4.3 Насыщенные и перенасыщенные растворы.
- •4.4 Кристаллизация растворов электролитов
- •Использование процесса кристализация электролитов при бурении скважин
- •4.5 Растворы с конденсированной твердой фазой
- •Глава 5 эмульсионные промывочные жидкости
- •5.1.1 Гидрофильные эмульсионные растворы
- •5.1.2 Эмульсионные жидкости-виброгасители
- •5.2. Гидрофобные эмульсии
- •Параметры, характеризующие качество эибр:
- •Параметры, характеризующие качество виэр:
- •Параметры, характеризующие устойчивость эмульсии, для тиэр:
- •5.3. Технические средства для приготовления эмульсионных промывочных жидкостей
- •Техническая характеристика установки уэм-5
- •Техническая характеристика установки уэм-5
- •Глава 6 газообразные агенты
- •6.1. Общие понятия. Область применения. Достоинства
- •6.2. Бурение скважин с продувкой сжатым воздухом
- •Оптимальные концентрации пенообразующих пав в зависимости от минерализации пластовой воды
- •6.3. Технические средства для охлаждения и осушения воздуха
- •Техническая характеристика блока осушки завода Курганхиммаш
- •Результаты производственных испытаний осушающе-охлаждающего агрегата
- •6.4 Технические средства для очистки воздуха от шлама.
- •Глава 7 газожидкостные смеси.
- •7.1 Общие сведения.
- •7.2. Параметры, характеризующие свойства гжс
- •7.3 Пенообразователи. Регулирование свойств гжс
- •7.4. Технические средства получения и нагнетания газожидкостных смесей
- •Заключение
- •Часть II. Стабилизация в неустойчивых стенок скважин. Задачами второй части исследований являются:
- •Глава8.Общие сведения о структуре горных пород.
- •8.1 Химические связи в минералах
- •8.2. Межмолекулярные связи в горных породах.
- •8.3 Поверхностная энергия горных пород.
- •8.4 Устойчивость стенок скважин.
- •Глава9. Промывочные жидкости для бурения уплотненных глинистых пород.
- •9.1. Класификация глинистых пород
- •Значения коэффициента для различной плотности глины
- •9.2. Осложнения при бурении уплотненных глинистых пород.
- •9.2.1. Механизм увлажнения и набухания глин.
- •9.2.2. Фильтрация воды в горные породы.
- •9.2.3. Разупрочнение уплотненных глин.
- •9.2.4. Диспергирование и размывание глин.
- •9.2.5. Влияние гидравлического давления на увлажнение глины.
- •9.2.6. Влияние горного давления на увлажнение глины.
- •9.3. Промывочные жидкости, применяемые для профилактики осложнений в уплотненных глинах
- •9.4. Основные направления выбора промывочной жидкости для бурения глинистых пород
- •9.5. Анализ эффективности применяющихся глинистых растворов для бурения уплотненных глин.
- •9.6. Анализ эффективности полимерных и полимерглинистых растворов.
- •9.7. Анализ эффективности ингибирующих растворов
- •Глава10. Промывочные жидкости для бурения неуплотненных глинистых пород.
- •10.1. Глинистые неуплотненные породы. Осложнения при их бурении.
- •10.2. Анализ влияния электролитов на увлажнение и прочность неуплотненной глины.
- •Зависимость пластической прочности образца глины от влажности к2
- •10.3. Влияние полимеров и полимерсолевых растворов на увлажнение и прочность неуплотненных глин.
- •10.4. Полимерполисолевые промывочные жидкости, для бурения неуплотненных глин .
- •11.2. Влияние технологических параметров бурения на раскрытие трещин и осложнение. Общие понятия.
- •11.3. Факторы, влияющие на осложнения горных пород.
- •11.4. Промывочные жидкости. Механизм их действия. Анализ эффективности.
- •Глава12. Промывочные жидкости для бурения трещиноватых горных пород.
- •12.1. Трещиноватые горные породы
- •12.2. Поглощение промывочной жидкости в трещиноватых породах
- •12.3. Мероприятия по предупреждению поглощения промывочных жидкостей
- •12.4. Анализ эффективности различных наполнителей для закупорки способность трещин
- •Закупоривающая способность глинистых паст
- •Определение закупоривающей способности вол
- •Закупоривающая способность вус
- •Зависимость объема тампонажной смеси от состава ее компонентов
- •Глава 13 промывочные жидкости для бурения соленосных отложений
- •13.1. Соленосные отложения. Осложнения.
- •13.2 Растворение и размывание соленосных отложений.
- •Скорость растворения галита в перемешиваемом малоглинистов растворе, м/с10-7 (емкость 10л)
- •Размывание хемогенных пород
- •Зависимость скорости и константы растворения соли от скорости потока
- •13.3 Пластические деформации хемогенных пород.
- •Промывочные жидкости, применяемые в России при бурении соленосных отложений
- •13.5 Лигниноглинистые растворы
- •Заключение
- •Библиографический список к первой части
- •Часть I.Очистные агенты
- •Глава 1 Коллоидные растворы……… ………. …………………………………..3
- •Глава3Полимеры и полимерные промывочные жидкости …………………50
- •Глава 4 Растворы электролитов.…………………………………………………77
12.2. Поглощение промывочной жидкости в трещиноватых породах
В связи с тем, что большая часть всех осложнений связана с водопоглощениями, основные усилия технологическая служба геологоразведочных экспедиций направляет на борьбу с поглощениями. Это одна из труднейших и важнейших проблем. Проведем расчет потерь и промывочной жидкости.
Для приведения жидкости, находящейся в трещине, в движение необходимо приложить усилие, равное по величине гидравлическому сопротивлению. Гидравлическое сопротивление определяется силой трения движущейся жидкости
Fтр=P (12.2)
где - коэффициент трения; Р - нормальное давление жидкости. Нормальное давление жидкости равно
Р = РудSбок=руд2bl (12.3)
где руд - удельное давление жидкости на единицу поверхности стенок трещины; Sбок - поверхность стенок трещины; b - ширина трещины; 1 - длина трещины.
Удельное нормальное давление равно разности давлений у стенок ро и в центре трещины
,
, (12.4)
здесь
- плотность жидкости: ц
- скорость течения жидкости в центре.
Тогда гидравлическое сопротивление трещин
, (12.5)
где S0 - поперечное сечение потока жидкости; - величина раскрытия трещины.
Коэффициент трения жидкости зависит от ее межмолекулярного взаимодействия. Межмолекулярное взаимодействие двух молекул воды или молекулы воды с молекулами (мельчайшими частицами) твердой фазы оказывается весьма значительным. У самой поверхности глинистой частицы, как отмечено выше, сила взаимодействия молекул воды и частицы достигает тысяч мегапаскалей [2]. Молекулы воды, удерживаемые этими силами, образуют гидратную пленку.
Если, по данным Е.М. Сергеева, ван-дер-ваальсовые силы вблизи глинистой частицы начинают действовать на расстоянии 4мкм, то в контакте воды с поверхностью стенок трещины эти силы действуют на значительно большие расстояния. Исследования автора на щелевом имитаторе, изготовленном из стальных дисков (рис.12.2), показали, что связанная вода наблюдается даже при раскрытии трещины 70 мкм. Это можно объяснить высокой поверхностной энергией дисков.
За пределами ван-дер-ваальсовых сил (электромолекулярных) действуют только электрические (кулоновские) силы, величина которых зависит от поверхностной энергии твердого тела:
, (12.6)
Таким образом, в зависимости от толщины слоя воды (раскрытости трещины) его прочности (межмолекулярное взаимодействие) и коэффициент трения резко изменяются. Существенное влияние на коэффициент трения оказывает и скорость течения жидкости .
С увеличением скорости и коэффициент трения понижается в соответствии с уравнением [34]
,
(12.7)
где n - показатель степени, зависящий от толщины слоя воды и сил взаимодействия воды с твердым телом, для ван-дер-ваальсового взаимодействия n= 3, кулоновского n =,1; к -показатель степени, зависящий от структуры воды и режима течения; для связанной (структурированной) воды (в микротрещинах, структурированных растворах) к = 2 1; для ламинарного течения к = 1; для турбулентного течения к = 0.
При увеличении скорости течения структурированной воды сначала показатель степени понижается до 1 (в результате дезориентирования молекул связанной воды), затем понижается с 1 до 0 (в результате превышения нормального давления над электромолекулярными силами и их дезориентации).
В последнем случае коэффициент трения зависит преимущественно от сопротивления частиц молекул воды, перемещающихся (под воздействием разности давления на периферии и в центре течения) от стенок трещины к центру и, учитывая вышесказанное, гидравлическое сопротивление течения жидкости в трещинах можно записать в виде:
для структурного режима (при ц=2)
, (12.8)
для ламинарного режима (при ц=2)
, (12.9)
для турбулентного режима (при ц=2)
, (12.10)
Заменяя
значения
и решая относительно Q.
Определим расход (потерю) воды в трещинах
с величиной
при
структурном режиме
, (12.11)
при ламинарном режиме
, (12.12)
при турбулентном режиме
, (12.13)
В зависимости от расхода (потерь) промывочной жидкости выделяют: частичное (до 90 л/мин), сильное (90-170 л/мин), полное (170-250 л/мин) и катастрофическое (более 250 л/мин) поглощения.
По величине раскрытия трещин A.M. Гончаренко поглощение подразделяет на четыре категории:
I при < 7 мм ; II при = 7 - 20 мм; III при = 20-30 мм; IV при > 30 мм.
Для своевременного принятия мер по предупреждению поглощений промывочных жидкостей ведут оперативные наблюдения за изменением статического уровня в скважине, объема промывочной жидкости в отстойниках с помощью различных уровнемеров, наблюдения за количеством промывочной жидкости, входящей в скважину и выходящей из скважины с помощью расходомеров, наблюдения за изменением давления на насосе и т.д.
Величина раскрытия трещин может определяться по различным методикам.
Одной из таких методик является определение величины раскрытия трещин по шламу. Считается, что в трещину вместе с промывочной жидкостью поступают частицы шлама размером меньшим, чем величина ее раскрытия. Если известны размеры частиц шлама, поступающих из скважины до бурения скважины и после бурения, то можно судить и о величине частиц шлама, унесенных жидкостью в трещины, а значит, и размерах самих трещин.
Существует методика определения величины раскрытия трещин (разработанная Б.М. Курочкиным [10]) по механической скорости бурения.
Б.М. Курочкин установил эмпирическую зависимость между приращением механической скорости ∆м =/0 в зоне поглощений от степени раскрытия трещин (рис.11.1). Здесь , 0 - механические скорости бурения в трещиноватом и нетрещиноватом интервале одной и той же породы.
Рис. 12.1. Зависимость степени раскрытия трещин от приращения механической скорости бурени
Наиболее широко распространены гидродинамические методы определения величины раскрытия трещин [41]. Для этого при различном давлении (уровне столба жидкости в скважине) определяют расход (потерю) промывочной жидкости. Затем определяют коэффициенты A=P/Q и B= = Р/Q2 и по специальным номограммам находят величину раскрытия трещин.
Автором работы разработан метод определения величины раскрытия трещин по расходу двух видов промывочной жидкости (например, воды) при турбулентном режиме и при ламинарном режиме (структурированной жидкости).
Для этого определяют давление на пласт трещиноватой породы Р и расход Q сначала применяемого для промывки скважины бурового раствора, затем жидкости с отличным от применяемого бурового раствора технологическими параметрами. Закачивание последней можно делать по бурильной колонне с пакером. Подставляя значения параметров в формулы (12.12) и (12.13) и решая систему двух уравнений, определяем значения и l.
