- •Очистные агенты
- •В. И. Зварыгин
- •Часть 1 очистные агенты
- •Глава 1
- •Коллоидные растворы
- •.Структура воды
- •1.2 Структура коллоидных растворов
- •1.2 Прочность структуры.
- •1.2 Вязкость воды
- •1.3 Стабильность бурового раствора
- •1.4 Водоотдача
- •1.5 Показатель фильтрации. Приборы для определения показателя фильтрации
- •1.9. Плотность промывочной жидкости. Приборы для определения плотности
- •1.7 Содержание абразивных частиц в буровых растворах. Прибор.
- •Глава 2 глинистые растворы. Растворы Общие сведения
- •2.1. Структурообразователи.
- •2.2. Структурирование глинистых растворов
- •Структурирование промывочной жидкости за счет диспергирования тердой фазы.
- •2.3. Ингибирующие глинистые растворы.
- •2.4 Неингибирующие глинистые растворы.
- •2.5. Активация и дезактивация глинистых частиц.
- •2.6. Технические средства для приготовления глинистых растворов
- •Глава 3 полимеры и полимерные промывочные жидкости
- •3.1. Полимеры – структурообразователи
- •Состав древесины
- •3.2Свойства и функции полимеров
- •3.3 Модифицирующие полимерполисолевые растворы
- •3.3.2. Экспериментальные исследования.
- •3.4. Зарубежные реагенты для приготовления промывочных жидкостей Основная классификация реагентов компании “бдс”:
- •3.5 Дезактивация дисперсной фазы гидрофобными веществами (пав, полимерами, маслами)
- •3.6 Полимерные растворы
- •3.7 Технические средства для приготовления полимерных растворов
- •Общая схема выбора промывочной жидкости
- •Глава4 растворы электролитов
- •4.1Истинные растворы
- •Теплота растворения электролитов
- •4.2Растворимость и скорость растворения электролитов.
- •Растворимость электролитов
- •Скорость растворения электролитов.
- •4.3 Насыщенные и перенасыщенные растворы.
- •4.4 Кристаллизация растворов электролитов
- •Использование процесса кристализация электролитов при бурении скважин
- •4.5 Растворы с конденсированной твердой фазой
- •Глава 5 эмульсионные промывочные жидкости
- •5.1.1 Гидрофильные эмульсионные растворы
- •5.1.2 Эмульсионные жидкости-виброгасители
- •5.2. Гидрофобные эмульсии
- •Параметры, характеризующие качество эибр:
- •Параметры, характеризующие качество виэр:
- •Параметры, характеризующие устойчивость эмульсии, для тиэр:
- •5.3. Технические средства для приготовления эмульсионных промывочных жидкостей
- •Техническая характеристика установки уэм-5
- •Техническая характеристика установки уэм-5
- •Глава 6 газообразные агенты
- •6.1. Общие понятия. Область применения. Достоинства
- •6.2. Бурение скважин с продувкой сжатым воздухом
- •Оптимальные концентрации пенообразующих пав в зависимости от минерализации пластовой воды
- •6.3. Технические средства для охлаждения и осушения воздуха
- •Техническая характеристика блока осушки завода Курганхиммаш
- •Результаты производственных испытаний осушающе-охлаждающего агрегата
- •6.4 Технические средства для очистки воздуха от шлама.
- •Глава 7 газожидкостные смеси.
- •7.1 Общие сведения.
- •7.2. Параметры, характеризующие свойства гжс
- •7.3 Пенообразователи. Регулирование свойств гжс
- •7.4. Технические средства получения и нагнетания газожидкостных смесей
- •Заключение
- •Часть II. Стабилизация в неустойчивых стенок скважин. Задачами второй части исследований являются:
- •Глава8.Общие сведения о структуре горных пород.
- •8.1 Химические связи в минералах
- •8.2. Межмолекулярные связи в горных породах.
- •8.3 Поверхностная энергия горных пород.
- •8.4 Устойчивость стенок скважин.
- •Глава9. Промывочные жидкости для бурения уплотненных глинистых пород.
- •9.1. Класификация глинистых пород
- •Значения коэффициента для различной плотности глины
- •9.2. Осложнения при бурении уплотненных глинистых пород.
- •9.2.1. Механизм увлажнения и набухания глин.
- •9.2.2. Фильтрация воды в горные породы.
- •9.2.3. Разупрочнение уплотненных глин.
- •9.2.4. Диспергирование и размывание глин.
- •9.2.5. Влияние гидравлического давления на увлажнение глины.
- •9.2.6. Влияние горного давления на увлажнение глины.
- •9.3. Промывочные жидкости, применяемые для профилактики осложнений в уплотненных глинах
- •9.4. Основные направления выбора промывочной жидкости для бурения глинистых пород
- •9.5. Анализ эффективности применяющихся глинистых растворов для бурения уплотненных глин.
- •9.6. Анализ эффективности полимерных и полимерглинистых растворов.
- •9.7. Анализ эффективности ингибирующих растворов
- •Глава10. Промывочные жидкости для бурения неуплотненных глинистых пород.
- •10.1. Глинистые неуплотненные породы. Осложнения при их бурении.
- •10.2. Анализ влияния электролитов на увлажнение и прочность неуплотненной глины.
- •Зависимость пластической прочности образца глины от влажности к2
- •10.3. Влияние полимеров и полимерсолевых растворов на увлажнение и прочность неуплотненных глин.
- •10.4. Полимерполисолевые промывочные жидкости, для бурения неуплотненных глин .
- •11.2. Влияние технологических параметров бурения на раскрытие трещин и осложнение. Общие понятия.
- •11.3. Факторы, влияющие на осложнения горных пород.
- •11.4. Промывочные жидкости. Механизм их действия. Анализ эффективности.
- •Глава12. Промывочные жидкости для бурения трещиноватых горных пород.
- •12.1. Трещиноватые горные породы
- •12.2. Поглощение промывочной жидкости в трещиноватых породах
- •12.3. Мероприятия по предупреждению поглощения промывочных жидкостей
- •12.4. Анализ эффективности различных наполнителей для закупорки способность трещин
- •Закупоривающая способность глинистых паст
- •Определение закупоривающей способности вол
- •Закупоривающая способность вус
- •Зависимость объема тампонажной смеси от состава ее компонентов
- •Глава 13 промывочные жидкости для бурения соленосных отложений
- •13.1. Соленосные отложения. Осложнения.
- •13.2 Растворение и размывание соленосных отложений.
- •Скорость растворения галита в перемешиваемом малоглинистов растворе, м/с10-7 (емкость 10л)
- •Размывание хемогенных пород
- •Зависимость скорости и константы растворения соли от скорости потока
- •13.3 Пластические деформации хемогенных пород.
- •Промывочные жидкости, применяемые в России при бурении соленосных отложений
- •13.5 Лигниноглинистые растворы
- •Заключение
- •Библиографический список к первой части
- •Часть I.Очистные агенты
- •Глава 1 Коллоидные растворы……… ………. …………………………………..3
- •Глава3Полимеры и полимерные промывочные жидкости …………………50
- •Глава 4 Растворы электролитов.…………………………………………………77
11.4. Промывочные жидкости. Механизм их действия. Анализ эффективности.
Основной причиной осыпания и обрушения скальных глинистых пород, как отмечено, является их трещиноватость. Поэтому главнейшей функцией промывочных жидкостей является закрепление кусочков горной породы между собой путем цементирования.
В природе немало примеров закрепления трещиноватых и пористых горных пород путем их цементирования различными растворами (кремнекислотой, кальциевыми растворами и др.). Макротрещиноватые горные породы в скважинах крепят при помощи тампонажных смесей.
Любой цемент характеризуется наличием в нем вяжущих компонентов, способных с течением времени затвердевать и кристаллизоваться (Са(ОН)2 , гипс). Для тампонирования скважин широко применяется портландцемент.
Понятно, что микротрещиноватые аргиллиты цементировать тампонажными смесями с низким водоцементным отношением (как это предусмотрено для цементирования макротрещиноватых пород) невозможно вследствие их высокой вязкости. Поэтому цементирование производят сильно разбавленными "тампонажными" смесями: известково-глинистыми (хлоркальциевые буровые растворы), гипсово-глинистыми (гипсовые, калиево-гипсовые буровые растворы), глиноземглинистыми (алюминатные буровые растворы), силикатглинистыми (силикатные буровые растворы) и их комбинациями (полимералюмосиликатные, полимерсиликатнокальциевые буровые растворы).
Причем чем сильнее разбавлены "смеси", тем глубже в трещины проникают компоненты.
Микротрещиноватые аргиллиты подобно цеолитам способны постепенно абсорбировать и накапливать в трещинах ионы.
Остановимся на механизме "цементирования" хлоркальциевыми буровыми растворами.
Раствор в своем составе имеет (табл.11.3) 8 - 10 % глины до 2 % хлористого кальция и 0,3 - 0,5 % гашеной извести. Для стабилизации и снижения водоотдачи в растворы добавляют 1 - 2 % КМЦ-600, а для разжижения 5 - 7 % КССБ.
В результате взаимодействия хлористого кальция с водой образуется гидроксид кальция:
CaCl2+H20Са(ОН)2+НС1,
рН раствора понижается до 6 и ниже.
Для более активного преобразования хлористого кальция в гидроксид кальция необходимо повысить рН раствора за счет введения щелочи.
Вводить каустическую соду для этого нежелательно, т.к. в результате реакции - СаС12 + NаOH Ca(OH)2 + NaCI в растворе образуется хлористый натрий, способствующий растворению, поэтому вместо каустической соды в раствор вводят довольно сильную щелочь Са(ОН)2.
При внедрении такого бурового раствора в микротрещины аргиллита за счет взаимодействия свободных ионов Са2+ с поверхностью трещин происходит нейтрализация отрицательного поверхностного заряда и, следовательно, обезвоживание трещин. Глинистые частицы (твердая фаза) в трещине коагулируют под воздействием Са2+ и Са(ОН)2. С течением времени концентрация'Са(ОН)2 в результате абсорбции возрастает, происходит твердение, а затем под влиянием кремнезема (глины) кристаллизация Са(ОН)2 в виде портландита.
По этой же схеме происходит цементирование микротрещин аргиллитов хлоркальциевогипсовыми буровыми растворами. Гипс, как известно, быстрее твердеет и кристаллизуется, поэтому такие растворы более эффективны.
В микротрещинах шириной, измеряемой долями микрона, твердение и кристаллизация Са(ОН)2 происходит без участия глинистых частиц.
Практика применения хлоркальциевых растворов показала, что их эффективность в различных аргиллитах неравнозначна. В одних случаях растворы облегчают перебуривание неустойчивых аргиллитов, в других - их действие менее выражено, а в некоторых случаях не дает ожидаемого эффекта [18].
Эффективность кальциевых растворов определяется в основном составом ионообменного комплекса глинистых пород. При преобладании в обменном комплексе ионов натрия должна наблюдаться наивысшая эффективность высококальциевых растворов (ВКР), т.к. а этом случае имеется реальная возможность упрочнения вследствие перехода глинистых пород из более набухающих и легкодиспергирующихся природных натриевых глин в менее набухающие и труднодиспергирующиеся кальциевые глины.
С повышением содержания ионов кальция в обменном комплексе глинистых пород эффективность применения ВКР должна уменьшаться.
Действительно, насыщенные кальцием глинистые породы не могут так интенсивно абсорбировать ионы Са2+, как это наблюдается в натриевых глинистых породах.
К недостаткам хлоркальциевого раствора также следует отнести его высокую вязкость и низкую термостойкость.
Более эффективными (по отношению к кальциевым аргиллитам) являются силикатные растворы. Сами аргиллиты сцементированы затвердевшими пленками кремнекислоты.
Силикатные растворы - это растворы, в которые в качестве вяжущей (цементирующей) добавки вводят жидкое стекло. Жидкое стекло - неорганический полимер, который получает упорядоченную структуру под воздействием твердого тела. Как известно, жидкое стекло имеет химическое сродство с глинистой породой и поэтому поглощается трещинами аргиллита. С течением времени пленки кремнекислоты твердеют и связывают кусочки аргиллита. Крепящее действие силиката натрия усиливается при наличии в породах ионов кальция. Жидкое стекло - сильная щелочь. При взаимодействии с кальцием образует дополнительный вяжущий компонент – гидроксид кальция.
К недостаткам силикатных растворов относится высокая гидрофильность электролита и его способность повышать (за счет щелочности) гидрофильность глинистой породы, в результате чего повышается их влажность.
Ионы SiO32-, как отмечено выше, в связи с активностью их взаимодействия с глиной, проникают и закрепляют породу на небольшую глубину, образуя полупроницаемый слой. Этот слой, как отмечено выше, весьма гидрофильный и свободно пропускает воду в трещины. Вода постепенно накапливается в трещинах и ослабляет связи между кусочками трещиноватой породы. Насыщение трещин водой обычно заканчивается осыпями и обвалами аргиллитов.
В.Ф. Роджерс считает, что при продолжительном воздействии силикатных растворов на породы опасность обвалов увеличивается.
Другой сложностью является трудность регулирования вязкости и водоотдачи раствора.
В связи с этим в США отказались от применения силикатных растворов.
Причиной осыпей и обвалов аргиллитов при использовании силикатных растворов В.Д. Городнов считает преобладающий рост скорости набухания породы с повышением концентрации жидкого стекла.
Поэтому он рекомендует использовать малосиликатные растворы с концентрацией жидкого стекла 2-5%. Опыт применения малосиликатного раствора при бурении глубоких скважин показал, что данная система может с успехом применяться при разбуривании мощных толщ потенциально неустойчивых глинистых пород, особенно при наличии в разрезе солей кальция и магния.
По нашему мнению, успех применения малосиликатных растворов заключается в возможности их проникать и закреплять породу на значительно большую глубину, чем силикатные растворы повышенной концентрации.
Алюминатные растворы. Глинистые кристаллы – листочки - представлены силикатными (Si2О32-) слоями, связанными гидроаргиллитовыми слоями (А1(ОН)2+), т.е. гидраты алюминия являются химически сродственными глинистым породам и их активными сшивающими агентами.
Таблица 11.3
Промывочные жидкости, применяющиеся для бурения микротрещиноватых
глинистых пород (неустойчивых аргиллитов)
Вид горной породы |
Название промы-вочного раствора |
Структу-рооразо-ватель,% |
Ингибитор дисперги-рования, % |
Латифи-катор (тверди-тель), % |
Разжи-житель раствора, % |
Актива-тор твердой фазы, % |
Добав-ки |
Неустой- чивые (трещи-новатые) глинис-тые породы |
Хлоркаль-циевый |
Глина 8-10 |
КМЦ 1-2 КССБ 5-7 |
CaCl2 1-2 Ca(OH)2 0.3-0.5 |
КССБ 5-7 |
Ca(OH)2 0.3-0.5 |
ПГ 0,5-1 |
Алюмини-зирован-ный |
Глина 6-15 |
КМЦ (метас М14, гипан) 0,3-0,5 |
Al2(SO4)3 0.3-0.5 или KАl(SO4)2 |
Окзил 0,3-0,5 Na2Cr2O7 0,05-1,0 |
NaOH 0.1-0.5 |
--- |
|
Силикат-ный |
Глина 8-10 |
КМЦ(М14) 0,5-1 |
Na2SiO3 2-3 |
УЩР 3-5 |
--- |
--- |
Кальциево-силикат-ный |
--- |
КМЦ 1,5-2 |
CaCl2 3-4 Na2SiO3 8-10 |
--- |
--- |
--- |
|
Алюмосиликат-ный |
--- |
КМЦ 1,5-2 |
Al2(SO4)3 1,2-1,8 Na2SiO3 4-6 |
--- |
--- |
--- |
Алюминатные растворы (табл.11.3) - это буровые растворы, содержащие - соли алюминия, переходящие в растворе в гидроксид алюминия. Гидроксид алюминия, активно взаимодействуя с глинистыми частицами, нейтрализует поверхностный заряд и сшивает их частицы друг с другом (вызывает коагуляцию частиц, предупреждая загущение раствора). С другой стороны, в трещинах гидроксид алюминия связывает глинистые частицы не только между собой, но и с поверхностью стенок трещин, надежно кольматируя трещины и закрепляя кусочки горной породы.
При наличии значительной величины раскрытия трещин в настоящее время все шире используют различные солегели (комбинации выше перечисленных растворов).
К таким растворам можно отнести растворы, разработанные В.Д. Городновым, В.Ю. Артамоновым, Е.А. Коноваловым, - полимерные кальциево-силикатные (ПКСР) и алюмосиликатные растворы (ПАСР) [20] (см. табл. 11.3).
С помощью ПАСР на разведочных площадях Якутии пробурено более 20 скважин. Как показал анализ производственных испытаний, ПАСР обеспечивает не только устойчивость аргиллитов, но и качественное вскрытие продуктивных (иефтегазоносных) пластов.
Глубина проникновения фильтрата в течение 7 - 30 суток составила 10 - 42 см. По данным лабораторных исследований керна, отобранного сверлящим геофизическим снарядом из стенок скважин, глубина зоны кольматации не превышала 1,5 - 2,5 см. Фильтрационное сопротивление этой зоны на один-два порядка больше сопротивления глинистой, корочки, что надежно обеспечивает изоляцию пласта в процессе всего цикла строительства скважины. Закрепленная зона не нарушается и при калибровке скважины.
