
- •Очистные агенты
- •В. И. Зварыгин
- •Часть 1 очистные агенты
- •Глава 1
- •Коллоидные растворы
- •.Структура воды
- •1.2 Структура коллоидных растворов
- •1.2 Прочность структуры.
- •1.2 Вязкость воды
- •1.3 Стабильность бурового раствора
- •1.4 Водоотдача
- •1.5 Показатель фильтрации. Приборы для определения показателя фильтрации
- •1.9. Плотность промывочной жидкости. Приборы для определения плотности
- •1.7 Содержание абразивных частиц в буровых растворах. Прибор.
- •Глава 2 глинистые растворы. Растворы Общие сведения
- •2.1. Структурообразователи.
- •2.2. Структурирование глинистых растворов
- •Структурирование промывочной жидкости за счет диспергирования тердой фазы.
- •2.3. Ингибирующие глинистые растворы.
- •2.4 Неингибирующие глинистые растворы.
- •2.5. Активация и дезактивация глинистых частиц.
- •2.6. Технические средства для приготовления глинистых растворов
- •Глава 3 полимеры и полимерные промывочные жидкости
- •3.1. Полимеры – структурообразователи
- •Состав древесины
- •3.2Свойства и функции полимеров
- •3.3 Модифицирующие полимерполисолевые растворы
- •3.3.2. Экспериментальные исследования.
- •3.4. Зарубежные реагенты для приготовления промывочных жидкостей Основная классификация реагентов компании “бдс”:
- •3.5 Дезактивация дисперсной фазы гидрофобными веществами (пав, полимерами, маслами)
- •3.6 Полимерные растворы
- •3.7 Технические средства для приготовления полимерных растворов
- •Общая схема выбора промывочной жидкости
- •Глава4 растворы электролитов
- •4.1Истинные растворы
- •Теплота растворения электролитов
- •4.2Растворимость и скорость растворения электролитов.
- •Растворимость электролитов
- •Скорость растворения электролитов.
- •4.3 Насыщенные и перенасыщенные растворы.
- •4.4 Кристаллизация растворов электролитов
- •Использование процесса кристализация электролитов при бурении скважин
- •4.5 Растворы с конденсированной твердой фазой
- •Глава 5 эмульсионные промывочные жидкости
- •5.1.1 Гидрофильные эмульсионные растворы
- •5.1.2 Эмульсионные жидкости-виброгасители
- •5.2. Гидрофобные эмульсии
- •Параметры, характеризующие качество эибр:
- •Параметры, характеризующие качество виэр:
- •Параметры, характеризующие устойчивость эмульсии, для тиэр:
- •5.3. Технические средства для приготовления эмульсионных промывочных жидкостей
- •Техническая характеристика установки уэм-5
- •Техническая характеристика установки уэм-5
- •Глава 6 газообразные агенты
- •6.1. Общие понятия. Область применения. Достоинства
- •6.2. Бурение скважин с продувкой сжатым воздухом
- •Оптимальные концентрации пенообразующих пав в зависимости от минерализации пластовой воды
- •6.3. Технические средства для охлаждения и осушения воздуха
- •Техническая характеристика блока осушки завода Курганхиммаш
- •Результаты производственных испытаний осушающе-охлаждающего агрегата
- •6.4 Технические средства для очистки воздуха от шлама.
- •Глава 7 газожидкостные смеси.
- •7.1 Общие сведения.
- •7.2. Параметры, характеризующие свойства гжс
- •7.3 Пенообразователи. Регулирование свойств гжс
- •7.4. Технические средства получения и нагнетания газожидкостных смесей
- •Заключение
- •Часть II. Стабилизация в неустойчивых стенок скважин. Задачами второй части исследований являются:
- •Глава8.Общие сведения о структуре горных пород.
- •8.1 Химические связи в минералах
- •8.2. Межмолекулярные связи в горных породах.
- •8.3 Поверхностная энергия горных пород.
- •8.4 Устойчивость стенок скважин.
- •Глава9. Промывочные жидкости для бурения уплотненных глинистых пород.
- •9.1. Класификация глинистых пород
- •Значения коэффициента для различной плотности глины
- •9.2. Осложнения при бурении уплотненных глинистых пород.
- •9.2.1. Механизм увлажнения и набухания глин.
- •9.2.2. Фильтрация воды в горные породы.
- •9.2.3. Разупрочнение уплотненных глин.
- •9.2.4. Диспергирование и размывание глин.
- •9.2.5. Влияние гидравлического давления на увлажнение глины.
- •9.2.6. Влияние горного давления на увлажнение глины.
- •9.3. Промывочные жидкости, применяемые для профилактики осложнений в уплотненных глинах
- •9.4. Основные направления выбора промывочной жидкости для бурения глинистых пород
- •9.5. Анализ эффективности применяющихся глинистых растворов для бурения уплотненных глин.
- •9.6. Анализ эффективности полимерных и полимерглинистых растворов.
- •9.7. Анализ эффективности ингибирующих растворов
- •Глава10. Промывочные жидкости для бурения неуплотненных глинистых пород.
- •10.1. Глинистые неуплотненные породы. Осложнения при их бурении.
- •10.2. Анализ влияния электролитов на увлажнение и прочность неуплотненной глины.
- •Зависимость пластической прочности образца глины от влажности к2
- •10.3. Влияние полимеров и полимерсолевых растворов на увлажнение и прочность неуплотненных глин.
- •10.4. Полимерполисолевые промывочные жидкости, для бурения неуплотненных глин .
- •11.2. Влияние технологических параметров бурения на раскрытие трещин и осложнение. Общие понятия.
- •11.3. Факторы, влияющие на осложнения горных пород.
- •11.4. Промывочные жидкости. Механизм их действия. Анализ эффективности.
- •Глава12. Промывочные жидкости для бурения трещиноватых горных пород.
- •12.1. Трещиноватые горные породы
- •12.2. Поглощение промывочной жидкости в трещиноватых породах
- •12.3. Мероприятия по предупреждению поглощения промывочных жидкостей
- •12.4. Анализ эффективности различных наполнителей для закупорки способность трещин
- •Закупоривающая способность глинистых паст
- •Определение закупоривающей способности вол
- •Закупоривающая способность вус
- •Зависимость объема тампонажной смеси от состава ее компонентов
- •Глава 13 промывочные жидкости для бурения соленосных отложений
- •13.1. Соленосные отложения. Осложнения.
- •13.2 Растворение и размывание соленосных отложений.
- •Скорость растворения галита в перемешиваемом малоглинистов растворе, м/с10-7 (емкость 10л)
- •Размывание хемогенных пород
- •Зависимость скорости и константы растворения соли от скорости потока
- •13.3 Пластические деформации хемогенных пород.
- •Промывочные жидкости, применяемые в России при бурении соленосных отложений
- •13.5 Лигниноглинистые растворы
- •Заключение
- •Библиографический список к первой части
- •Часть I.Очистные агенты
- •Глава 1 Коллоидные растворы……… ………. …………………………………..3
- •Глава3Полимеры и полимерные промывочные жидкости …………………50
- •Глава 4 Растворы электролитов.…………………………………………………77
7.4. Технические средства получения и нагнетания газожидкостных смесей
В мировой практике бурения пены получают в основном по трем схемам. Первую схему (рис. 14.8, а) применяют при бурении неглубоких скважин, в которых давление на нагнетание пены составляет не более 0,7 МПа. Нагнетательная система представлена компрессором, емкостью 3 с крышкой 2, смесителем 10 системой трубопроводов 7 с вентилями 4, 5,8,9м 11.
В процессе бурения открывают вентили 5, 4 и 8. В смеситель 10 одновременно поступает воздух (через вентиль 8) и раствор ПАВ (из емкости 3), который выдавливается воздухом, через вентиль 4. Перемешиваемая в смесителе газожидкостная смесь направляется через бурильные трубы в скважину.
Для предотвращения попадания пены в компрессор устанавливают обратный клапан 6. Расход раствора ПАВ (8-10 л/мин) регулируют вентилем 9, расход пены (1,2-1,8 м3/мин), продавливаемой в скважину, - вентилем сброса 11. Давление в магистрали определяют по манометру 1.
Вторую схему (рис. 14.8, б) применяют при бурении глубоких скважин при давлении в нагнетательной линии до 6,3 МПа. Для получения пены с повышенным давлением в магистраль включают пеногенератор с буровым насосом 3 и компрессорно-дожимным устройством 2 (УКД-Н-У-2), имеющим следующие технические характеристики:
Максимальное давление, МПа 6,3 Габариты:
Степень аэрации 1-300 длина 1 100
Ресурс работы, ч 3 000 ширина 690
Масса, кг 160 высота 1 000
Рис. 14.8. Схема обвязки устья скважины для бурения с пеной
В процессе бурения в дожимное устройство 2 одновременно поступает воздух от компрессора и раствор ПАВ, закачиваемый насосом 3 из емкости 4. Получаемая газожидкостная смесь через нагнетательный шланг 10 закачивается в скважину 11. Расход и давление регулируют вентилями 8 и 9
При бурении глубоких скважин много времени затрачивается на, нагнетание пены соответствующего давления после спускоподъемных, операций.
Для снижения этих затрат в нагнетательную магистраль включают накопитель (емкость для накопления пены необходимого давления).
При спускоподъемных операциях, когда подача пены в скважину прекращается, вентиль 8 закрывают, а вентили 6, 7 открывают и пена поступает в накопитель. После достижения нужного давления компрессор 1 насос 3 отключают до конца спускоподъемных операций. Накопитель снабжен предохранительным клапаном 5, отрегулированным на давление 1,2 МПа, и манометром.
После окончания спуска снаряда в скважину открывают вентиль; включают насос и компрессор. В скважину подается пена как из дожимного устройства, так и из накопителя. После восстановления циркуляции пены накопитель отключают.
Исследование способов нагнетания ГЖС позволило сотрудникам ВНИИБТ разработать новый способ реализации нагнетания ГЖС с использованием гидравлических мощностей буровых насосов и создать компрессорно-дожимное устройство (КДУ), в котором жидкостный компонент поступает в рабочий цилиндр, а воздух – в специальные компрессорные цилиндры.
Компрессорно-дожимные устройства предназначены для дожатия газа (воздуха) после компрессора низкого давления с целью получения газожидкостной смеси среднего давления. Они сконструированы на базе буровых насосов и являются многофункциональными машинами, переналаживаемыми при изменении технологических процессов.
Компрессорные цилиндры устанавливают вертикально на гидроблоке бурового насоса на месте снятых седел его нагнетательных клапанов. Цилиндры состоят из рабочей камеры, соединенной с рабочим цилиндром насоса, газового клапана для сообщения рабочей камеры с источником сжатого газа, нагнетательного клапана и нагнетательной камеры.
Устройство, разработанное ВНИИБТ на базе насоса двойного действия 11Гр (рис. 7.3), работает следующим образом. При движении поршня 1 вправо в цилиндре 2 насоса уровень жидкости в левой рабочей камере 4 понижается, и воздух поступает через газовый клапан 5 в освобожденную полость рабочей камеры 4. Из жидкостного коллектора 10 в цилиндр 2 через левый всасывающий клапан 3 поступает заданное количество перекачиваемой жидкости. Одновременно уровень жидкости в правой рабочей камере 4 поднимается и давление воздуха в ней повышается. При достижении рабочего давления в правой камере открывается нагнетательный клапан 6, через который из рабочей камеры в нагнетательную камеру 7 поступает вначале воздух, а затем в конце нагнетания технологически заданное количество перекачиваемой жидкости. При обратном ходе поршня 1 происходит смена процессов в левой и правой рабочих камерах.
Для обеспечения устойчивой работы КДУ объем рабочей камеры 4 превышает объем, описываемый поршнем 1 насоса, что позволяет исключить переток воздуха из нее в цилиндр 2, имеющий непрочные тупиковые зоны.
|
|
Рис. 7.4. Схема КДУ на базе насоса НБ |
Рис. 7.3. Схема КДУна базе насоса 11 Гр |
|
|
|
|
|
|
|
|
|
|
|
|
Газовые клапаны и нагнетательные камеры отдельных компрессорных цилиндров, установленных на гидроблоке насоса, объединены коллекторами 8 и 9. Воздух в коллектор 9 подается с помощью компрессора низкого давления, а перекачиваемая жидкость в коллектор 10 – дозировочным насосом. Газожидкостная смесь образуется при истечении через щели нагнетательных клапанов и дальнейшей транспортировке по нагнетательной линии.
На рис. 7.4 представлена схема КДУ на базе трехплунжерного насоса НБ4-320/63 (УКД-Н-4), разработанного ВИТРом совместно с кафедрой компрессоростроения ЛПИ им. М.И. Калинина. УКД-Н-4 включает три компрессорных цилиндра, установленных на гидроблоке насоса НБ4-320/63, имеющего рабочие камеры 2 с плунжерами 12 и всасывающими клапанами 1. Компрессорный цилиндр состоит из рабочей камеры 4, соединенной с камерой 2 переточным каналом 3. Объем камеры 4 превышает объем, описываемый плунжером 12, что позволяет избежать перетока воздуха из камеры 4 в камеру 2. Над камерой 4 установлены нагнетательный клапан 10 и плита 11 с размещенными на ней газовыми клапанами 5. Для исключения образования непроточных зон в верхней части камеры 4 плита 11 выполнена общей для нагнетательного 10 и газовых 5 клапанов, которые установлены на одном уровне, а газовые, кроме того, размещены на плите 11 концентрично и равномерно. Газоввод 6, расположенный над камерой 4, соединен с общим для компрессорных цилиндров воздушным коллектором 7, а нагнетательный коллектор 8 объединяет нагнетательные камеры 9 всех компрессорных цилиндров.
Технические характеристики КДУ на базе насосов 11Гр и НБ4-320/63 приведены в табл. 7.3.
КДУ монтируют в соответствии с техническим описанием и инструкцией по эксплуатации в следующем порядке. Демонтируют седла нагнетательных клапанов, а вместо них в верхней части гидроблока устанавливают и крепят к нему шпильками компрессорные цилиндры. В гидроблоке устанавливают всасывающие клапаны для подачи жидкости в рабочую камеру насоса, а также воздушный и нагнетательный коллекторы, подсоединяя их к соответствующим патрубкам отдельных компрессорных цилиндров. Воздушный коллектор подсоединяют к источнику сжатого воздуха (компрессор низкого давления), нагнетательный – к манифольду, а приемный – шлангом к дозировочному насосу.