
- •1 Блок
- •1. Ламинарное движение жидкости. Определение средней скорости течения.
- •2. Турбулентное движение жидкости. Расчёт эквивалентного диаметра.
- •3. Основы теории подобия. Анализ размерностей. Теорема Бекингема.
- •4. Гидродинамическое подобие.
- •5. Идеализированные модели гидродинамической структуры потоков.
- •6.Неидеализированные модели гидродинамической структуры потоков.
- •7. Сопротивление потоку. Местное сопротивление потоку.
- •8. Потери давления при движении жидкости в аппаратах.
- •9) Механическое перемешивание. Энергия, затрачиваемая на процесс перемешивания.
- •10. Теплообменные процессы. Основной закон теплопроводности
- •11. Теплопроводность плоской и цилиндрической стенки.
- •12. Теплообменные процессы. Конвективный теплообмен.
- •13. Тепловое подобие.
- •14. Теплопередача при стационарном режиме. Теплопередача через плоскую стенку.
- •15. Теплопередача через цилиндрическую стенку. Тепловая изоляция.
- •1. Нагревание острым и глухим паром. Особенности и отличие двух процессов.
- •2. Нагревание дымовыми газами, промежуточными теплоносителями и электрическим током. Общность и отличие этих процессов.
- •3. Выпаривание. Определение полной депрессии. Способы выпаривания.
- •4. Выпарные аппараты. Материальный и тепловой балансы процесса выпаривания.
- •5. Массообменные процессы. Фазовое равновесие. Материальный баланс массообменных процессов.
- •6. Основные уравнения массопередачи. Средняя движущая сила процесса массопередачи.
- •7. Массообмен между фазами. Конвективная диффузия.
- •8) Критериальное уравнение конвективного массообмена.
- •9) Абсорбция. Физические основы процесса абсорбции. Влияние температуры и давления на процесс абсорбции.
- •10. Адсорбция. Равновесие между фазами. Материальный баланс процесса адсорбции.
- •11. Перегонка. Материальный баланс простой перегонки.
- •12. Ректификация. Ректификация при разных давлениях.
- •14. Сушка. Материальный баланс сушки. Статика сушки. Кинетика сушки.
- •15. Кристаллизация. Материальный и тепловой балансы процесса кристаллизации.
1 Блок
1. Ламинарное движение жидкости. Определение средней скорости течения.
При относительно небольших скоростях жидкость движется параллельными струйками, не смешивающимися друг с другом. Такое движение жидкости называют струйчатым или ламинарным. Струйки обладают различными скоростями: в слое, непосредственно соприкасающемся со стенками, вследствие прилипания скорость равняется нулю и достигает максимального значения в слое, движущемся по оси трубы.
Рассмотрим распределение скоростей и расход жидкости при установившемся ламинарном потоке.
Вследствие действия между слоями сил трения слои будут двигаться с неодинаковыми скоростями. Центральный цилиндрический слой у оси трубы имеет максимальную cкорость, по мере удаления от оси, скорость элементарных кольцевых слоёв будет уменьшаться.
Непосредственно
у стенки скорость жидкости равна нулю
.
Выделим в потоке жидкости, ламинарно движущейся по трубе с радиусом R, цилиндрический слой l и радиусом r.
Движение
слоя происходит под действием сил
давления P1
и P2
с обеих торцевых сторон цилиндра:
(17),
где
P1
и P2
- гидростатическое давление в сечениях
1-1 и 2-2.
Движению цилиндра оказывает сопротивление сила внутреннего трения, согласно закону Ньютона равна.
где
Wr
– скорость движения жидкости вдоль
оси (18) , цилиндра на расстоянии
r
от оси.
F = 2prl – наружная поверхность цилиндра
m - вязкость жидкости.
В
соответствии с законами динамики для
установившегося движения можно написать
уравнение :
(19). После подстановки и сокращения
переменных, получим выражение для
(20)
При r = R, W = 0, а при r = 0, Wr = Wmax уравнение
.
Откуда
Wr
можно выразить через Wmax:
Уравнение (21) представляет собой закон Стокса, выражающий параболическое распределение скоростей в сечении трубопровода при ламинарном движении. Согласно этому закону скорость течения жидкости у стенки трубы равна нулю и максимальна по оси трубы.
Средняя
скорость равна половине максимальной
(22)
Для определения расхода жидкости при ламинарном движении рассмотрим элементарное кольцевое сечение с внутренним радиусом r и внешним радиусом (r + dr), площадь которого равна dS = 2prdr.
Умножая скорость слоя жидкости на площадь его сечения, получим расход жидкости:
dVсек
= 2prdrWr
(23), интегрируя выражение (23) найдём
расход жидкости для всей площади сечения
трубы. Интегрируя от r
= 0 до R
получим
Подставив
вместо Wr
его значение из выражения (20) и разделив
расход жидкости на площадь сечения
трубы найдём среднюю скорость:
Сопоставляя значение Wср со значением Wмакс, находим, что Wср равна половине Wмакс.
2. Турбулентное движение жидкости. Расчёт эквивалентного диаметра.
При относительно небольших скоростях жидкость движется параллельными струйками, не смешивающимися друг с другом. Такое движение жидкости называют струйчатым или ламинарным.
При турбулентном режиме движения частицы жидкости движутся с большими скоростями, беспорядочно в различных направлениях. Распределение скоростей по поперечному сечению трубопровода идёт по кривой, сходной с параболой, но только с более широкой вершиной и средняя скорость потока составляет 0,8-0,9 от максимальной.
У стенок трубы в очень тонком пограничном слое движение носит ламинарный характер. Характер движения жидкости зависит от скорости W жидкости, от диаметра d трубы, от плотности r жидкости и вязкости (m или n) жидкости. Переход от ламинарного течения к турбулентному происходит тем легче, чем больше массовая скорость жидкости rW и диаметр трубы d и чем меньше вязкость жидкости m. Рейнольдс установил, что указанные величины можно объединить в безразмерный комплекс Wdr/m, значение которого позволяет судить о режиме движения жидкости. Этот комплекс носит название критерия Рейнольдса:
Re = Wdr/m = Wd/n (26)
Переход от ламинарного к турбулентному движению характеризуется критическим значением Reкр. Так, при движении жидкостей по прямым гладким трубам Reкр » 2320. При Re < 2320 течение является ламинарным. При 2320 < Re < 10000 – неустойчивый режим, режим движения находится в переходной области. При Re > 10000 – устойчивое турбулентное движение. При движении жидкости в трубах и каналах некруглого сечения в выражение критерия Re вместо диаметра подставляют величину эквивалентного диаметра dэкв,
Wср = 4 rг = 4f пс /П (27)
где r – гидравлический радиус , fпс – площадь поперечного сечения ,П – смоченный периметр ,dэкв – эмпирическое понятие