
- •1. Классификация элементов систем автоматики.
- •2. Статические и динамические характеристики элементов систем автоматики.
- •3. Основные методы измерения и измерительные системы.
- •4/7. Классификация электрических датчиков.
- •5. Контактные датчики: назначение, принцип действия.
- •6. Потенциометрические датчики: назначение, принцип действия.
- •8.Электромагнитные датчики: назначение, принцип действия.
- •9. Трансформаторные датчики
- •10. Магнитоупругие датчики: назначение, принцип действия
- •11. Индукционные датчики: назначение, принцип действия.
- •15. Ультразвуковые датчики: назначение, принцип действия.
- •12. Пьезоэлектрические датчики: назначение, принцип действия.
- •16. Фотоэлектрические датчики: назначение, принцип действия.
- •13. Емкостные датчики: назначение, принцип действия.
- •14. Термоэлектрические датчики: назначение, принцип действия.
- •17. Приемники излучения фотоэлектрических датчиков.
- •18.Оптопара: назначение, принцип действия.
- •21. Магнитоуправляемые контакты: конструкция, принцип действия.
- •22. Аналого-цифровые преобразователи: назначение, принцип действия.
- •23. Цифро-аналоговые преобразователи: назначение, принцип действия.
- •26. Электронные коммутаторы: типы, принцип действия.
- •27.Мультиплексор и демультиплексор.
- •28. Назначение, типы задающих устройств.
- •25. Принцип действия гидравлических и пневматических усилителей.
- •29. Элементы релейно – контактного управления и защиты.
- •24. Назначение, сфера применения усилителей преобразователей.
- •31. Электронные бесконтактные реле.
- •32. Герконовое реле, принцип действия, характеристики.
- •33. Электронное реле времени: устройство, принцип действия
- •34. Магнитный пускатель: принцип действия, характеристики.
- •36.Переключающий усилитель: назначение принцип действия.
- •37. Магнитные усилители: назначение, принцип действия.
- •38. Электромагнитные исполнительные устройства
- •39. Электромагнит постоянного тока: назначение, принцип действия.
- •19. Первичные преобразователи с неэлектрическим выходным сигналом.
- •20.Элементы и устройства пневматических средств автоматики.
- •42. Газоразрядные и семисегментные индикаторы.
- •45. Характеристики показателей надежности.
- •47. Устройства преобразования неэлектрических величин в электрический сигнал
- •46. Услов. Графическое обозначение датчиков на структ. Функцион. И принцип схемах
18.Оптопара: назначение, принцип действия.
Оптопара — электронный прибор, состоящий из излучателя света (обычно — светодиод, в ранних изделиях — миниатюрная лампа накаливания) и фотоприёмника (биполярных и полевых фототранзисторов, фотодиодов,фототиристоров, фоторезисторов), связанных оптическим каналом и как правило объединённых в общем корпусе. Принцип работы оптрона заключается в преобразовании электрического сигнала в свет, его передаче по оптическому каналу и последующем преобразовании обратно в электрический сигнал.
Оптопары используются для гальванической развязки цепей — передачи сигнала без передачи напряжения, для бесконтактного управления и защиты.
21. Магнитоуправляемые контакты: конструкция, принцип действия.
Существенно повысить надежность реле можно за счет герметизации контактов. Так как в этом случае невозможно механически связать контактный узел с электромагнитным приводом, то необходимо для перемещения герметизированных контактов использовать силы электромагнитного притяжения. Контактные пластины для этого изготовляются из ферромагнитного материала. Таким образом, контакты становятся магнитоуправляемыми.
К магнитоуправляемым контактам относятся герконы (т. е. герметизированные контакты) и ферриды. Применяются они для тех же целей, что и мощные электромагнитные реле. Они и возникли в результате совершенствования контактных электромагнитных устройств и стремления свести к минимуму их недостатки: сравнительно небольшой срок службы (до 107 срабатываний), невысокое быстродействие (десятки миллисекунд), потребление энергии в течение всего периода притяжения якоря и необходимость периодического обслуживания.
Геркон (рис. 19.10, а) представляет собой впаянные в стеклянную ампулу (баллон) пермаллоевые пластины, служащие одновременно токоподводами, контактами и магнитопроводом. Пластины впаяны в ампулу таким образом, чтобы контакты, в качестве которых используются внутренние концы пластин, покрытые золотом, радием или вольфрамом, находились на некотором расстоянии друг от друга, т. е. были разомкнуты.
К наружным концам пластин припаивают провода, служащие для присоединения к внешней цепи. Если геркон поместить в магнитное поле, созданное током в обмотке 2, окружающей геркон, то на контакты будет действовать электромагнитная сила F3. Если эта сила окажется больше противодействующего усилия упругих пластин, то произойдет замыкание контактов.
22. Аналого-цифровые преобразователи: назначение, принцип действия.
Аналого-цифровой преобразователь – это устройство, преобразующее входной аналоговый сигнал в цифровой.
Входная аналоговая величина с сравнивается с помощью компараторов с эталонными уровнями, образованными делителями из резисторов равного сопротивления. При этом срабатывают младшие компараторы, образующих на выходах схем И-НЕ нормальный единичный код, который затем с помощью специального дешифратора преобразуется в двоичный выходной сигнал.
Работа АЦП заключается в следующем: вых. импульс узла запуска обнуляет счетчик, устанавливает RS-триггер в состояние «1» и запускает генератор линейного изменяющегося напряжения ГЛИН. При наличии логической единицы на прямом выходе триггера вых. импульсы генератора тактовых импульсов ГТИ через схему совпадения «И» поступают на вход счетчика.
Когда напряжение на выходе ГЛИН станет равным Uвх, на выходе компаратора появляется логическая «1», которая переключает триггер в положение «0» и прерывает связь счетчика с ГТИ. Длительность продолжительного импульса tв на выходе триггера пропорциональна Uвх, следовательно, при низкой частоте, ГТИ код установившийся на выходе счетчика, является шифром, эквивалентным величине Uвх.