Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
DM_i_OK.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
3.51 Mб
Скачать

Смазывание

Смазывание цепи оказывает решающее влияние на ее долговечность.

Для ответственных силовых передач следует по возможности применять непре­рывное картерное смазывание видов:

а) окунанием цепи в масляную ванну, причем погружение цепи в масло в самой глубокой точке не должно превышать ширины пластины; применяют до ско­рости цепи 10 м/с во избежание недопустимого взбалтывания масла;

б) разбрызгивание с помощью спе­циальных разбрызгивающих выступов или колец и отражающих щитков, по которым масло стекает на цепь, применяют при скорости 6...12 м/с в случаях, когда уро­вень масла в ванне не может быть поднят до расположения цепи;

в) циркуляционное струйное смазыва­ние от насоса, наиболее совершенный способ, применяют для мощных быстро­ходных передач;

г) циркуляционное центробежное с по­дачей масла через каналы в валах и звездочках непосредственно на цепь; при­меняют при стесненных габаритах пере­дачи, например, в транспортных машинах;

д) циркуляционное смазывание распы­лением капель масла в струе воздуха под давлением; применяют при скорости более 12 м/с.

В среднескоростных передачах, не имею­щих герметичных картеров, можно при­менять пластичное внутришарнирное или капельное смазывание. Пластичное внут­ришарнирное смазывание осуществляют периодическим, через 120...180 ч, погруже­нием цепи в масло, нагретое до темпе­ратуры, обеспечивающей его разжижение. Пластичный смазочный материал применим при скорости цепи до 4 м/с, а капельное смазывание - до 6 м/с.

В передачах с цепями крупных шагов предельные скорости для каждого способа смазывания несколько ниже.

При периодической работе и низких скоростях движения цепи допустимо периодическое смазывание с помощью ручной масленки (через каждые 6...8 ч). Масло подается на нижнюю ветвь у входа в зацепление со звездочкой.

При капельном ручном, а также струй­ном смазывании от насоса необходимо обеспечивать распределение смазочного материала по всей ширине цепи и попада­ние его между пластинами для смазы­вания шарниров. Подводить смазку пред­почтительно на внутреннюю поверхность цепи, Откуда под действием центробеж­ной силы она лучше подается к шарнирам.

В зависимости от нагрузки для смазы­вания цепных передач применяют масла индустриальные И-Г-А-46...И-Г-А-68, а при малых нагрузках Н-Г-А-32.

За рубежом начали выпускать для ра­боты при легких режимах цепи, не требующие смазывания, трущиеся поверх­ности которых покрыты самосмазывающимися антифрикционными материалами.

44. Особенности работы цепной передачи: влияние величины шага цепи на равномерность хода, происхождение удара(с графической иллюстрацией).

Основные параметры цепных передач:

Средняя скорость цепи: z1 – число зубьев малой звездочки; n1 – частота ее вращения, P – шаг.

Передаточное отношение:

- скорость движения цепи, особенно при малых числах зубьев звездочек, не посто­янна, что вызывает колебания переда­точного отношения. Основной причиной этого недостатка является то, что цепь состоит из отдельных звеньев и располагается на звездочке не по окружности, а по многоугольнику. В связи с этим скорость цепи при равномерном вращении звездочки не постоянна. На рис. 8 показаны скорости шарниров цепи и зубьев звездочки. В данный момент, когда шарнир А находится в зацеплении, скорость шарнира и окружная скорость звездочки в точке, совпадающей с центром, шарнира, равны. Разложим эту скорость на две составляющие: направленную вдоль ветви цепи, и перпендикулярную к цепи. Движение ведомой звездочки определяется скоростью . Поскольку величина угла изменяется в пределах от (момент входа в зацепление шарнира А) до (момент входа в зацепление шарнира В), то изменяется и скорость , а это является причиной непостоянства передаточного отношения i и дополнительных динамических нагрузок в передаче.

 

- повышенный шум, особенно на высоких скоростях, вследствие удара звена цепи при входе в зацепле­ние и дополнительные динамические нагрузки из-за многогранности звездочек; Со скоростью связаны поперечные колебания ветвей цепи. В момент входа в зацепление шарнира В с зубом С вертикальные составляющие их скоростей и , направлены навстречу друг другу, соприкосновение шарнира с зубом сопровождается ударом. Последовательные удары являются причиной шума передачи и paзpyшения шарниров цепи и зубьев звездочек. Для ограничения вредного влияния ударов выработаны рекомендации по выбору шага цепи в зависимости от частоты вращения ведущей звездочки.

- они работают в условиях отсутствия жидкостного трения в шарни­рах и, следовательно, с неизбежным их износом, существенным при плохом сма­зывании и попадании пыли и грязи. За один пробег в каждом шарнире совершаются четыре поворота: два на ведущей и два на ведомой звездочках. Эти повороты вызывают износ втулок и валиков шарниров. Износ цепи и зубьев звездочек связан и с перемещением шарниров по профилю зуба в процессе зацепления. Это приводит к вытягиванию цепи, для устранения последствий которого требуется применение натяжных устройств. Для уменьшения износа необходимо следить за удовлетворительной смазкой шарниров.

- они требуют более высокой точности установки валов, чем клиноременные передачи, во избежание соскакивания цепи со звездочки и более сложного ухо­да — смазывания, регулировки.

Шаг цепи является основным параметром цепной передачи и принимается по ГОСТу. Чем больше шаг, тем выше нагрузочная способность цепи, но сильнее удар звена о зуб в период набегания на звездочку, меньше плавность, бесшумность и долговечность передачи.

45. Волновые зубчатые передачи: конструкция, особенности работы, характеристики.

Волновые передачи основаны на принципе передачи вращательного движения за счет бегущей волновой деформации одного из зубчатых колес.

Такая передача была запатентована американским инженером Массером в 1959 г.

Волновые передачи имеют меньшие массу и габариты, большую кинематическую точность, меньший мёртвый ход, высокую вибропрочность за счёт демпфирования (рассеяния энергии) колебаний, создают меньший шум.

При необходимости такие передачи позволяют передавать движение в герметичное пространство без применения уплотняющих сальников, что особенно ценно для авиационной, космической и подводной техники, а также для машин химической промышленности.

Кинематически эти передачи представляют собой разновидность плане­тарной передачи с одним гибким зубчатым колесом. На рис. 18.1 изображе­ны основные элементы волновой передачи: неподвижное колесо 7 с внут­ренними зубьями, вращающееся упругое колесо 2 с наружными зубьями и водило h. Неподвижное колесо закрепляется в корпусе и выполняется в виде обычного зубчатого колеса с внутренним зацеплением. Гибкое зубча­тое колесо имеет форму стакана с легко деформирующейся тонкой стенкой: в утолщенной части (левой) нарезаются зубья, правая часть имеет форму вала. Водило состоит из овального кулачка и специального подшипника.

Рис. 18.1. Волновая передача

 

Гибкое колесо деформируется так, что по оси овала I—I зубья зацепля­ются на полную рабочую высоту; по оси II—II зубья не зацепляются.

Передача движения осуществляется за счет деформирования зубчатого венца гибкого колеса. При вращении водила волна деформации бежит по окружности гибкого зубчатого венца; при этом венец обкатывается по не­подвижному жесткому колесу в обратном направлении, вращая стакан и вал. Поэтому передача и называется волновой, а водило — волновым генератором.

Податливость зубчатого венца обеспечивает достаточно равномерное распределение нагрузки по зубьям, находящимся в зоне зацепления. При номинальных нагрузках процент зубьев находящихся в зацеплении составляет 15-25% от общего их числа. Поэтому в волновых передачах применяется мелкомодульное зацепление, а числа зубьев колес лежат в пределах от 100 до 600. Зона зацепления в волновой зубчатой передаче совпадает с вершиной волны деформации. По числу зон или волн передачи делятся на одноволновые, двухволновые и так далее. При вращении водила овальной формы образуются две волны. Такую передачу называют двухволновой. Бывают трехволновые передачи, на рис. 18.2 показана схема такой передачи. Передачи с числом волн более трех применяются редко.

 

Рис. 18.2. Трехволновая передача

Распределение передаваемых усилий по нескольким зонам уменьшает нагрузку на элементы пар и позволяет существенно уменьшать габаритные размеры и массу механизмов. Многозонный и многопарный контакт звеньев существенно увеличивает жесткость механизма, а за счет осреднения ошибок и зазоров, уменьшает мертвый ход и кинематическую погрешность механизма. Поэтому волновые механизмы обладают высокой кинематической точностью и, несмотря на наличие гибкого элемента, достаточно высокой жесткостью. Гибкое колесо обеспечивает волновым передачам возможность передачи движения через герметичную стенку, которая разделяет две среды (например, космический аппарат и открытый космос). При этом гибкое колесо выполняется как элемент герметичной стенки, входной вал и генератор волн располагаются по одну сторону стенки (внутри космического аппарата), а выходное звено - по другую (в космическом пространстве). Преимущества и недостатки волновых передач.

Преимущества:

- Возможность реализации в одной ступени при двухволновом генераторе волн больших передаточных отношений в диапазоне от 40 до 300.

- Высокая нагрузочная способность при относительно малых габаритах и массе.

- Малый мертвый ход и высокая кинематическая точность.

- Возможность передачи движения через герметичную перегородку.

- Малый приведенный к входному валу момент инерции (для механизмов с дисковыми генераторами волн).

Недостатки:

- Практически индивидуальное, дорогостоящее, весьма трудоемкое изготовление гибкого колеса и волнового генератора;

- Возможность использования этих передач только при сравнительно невысокой угловой скорости вала генератора;

- Ограниченные обороты ведущего вала (во избежание больших центробежных сил инерции некруглого генератора волн; мелкие модули зубьев 1,5-2 мм)

Передаточное отношение волновых передач определяется методом остановки водила (метод Виллиса).

По рис. 18.1 передаточное отношение: при неподвижном жестком колесе

(1)

где и — угловые скорости волнового генератора и гибкого колеса; , числа зубьев жесткого и гибкого колес; С — число волн;

при неподвижном упругом колесе

(2)

В формуле (1) знак «минус» указывает на разные направления вра­щения генератора и гибкого колеса.

Причины выхода из строя и критерии работоспособности.

В процес­се работы этой передачи наблюдается

- разрушение подшипника генератора волн от нагрузки в зацеплении;

- проскакивание генератора волн при больших вращающих моментах, когда зубья на входе в зацепление упираются друг в друга вершинами;

- поломка гибкого колеса от трещин усталости (особенно при u < 80);

- износ зубьев на концах;

- пластические деформации боковых поверхностей зубьев при перегрузках.

46. Фрикционные передачи. Конструкции, характеристики, матриалы, основы расчета.

Простейшая фрикционная передача состоит из двух соприкасающихся между собой колес (катков, роликов, дисков); вращение одного из колес преобразуется во вращение другого за счет сил трения, возникающих в месте контакта колес (рис. 1, 2). Необходимая сила трения между колесами фрикционной передачи достигается прижатием одного из них к другому. Постоянную силу прижатия осуществляют одним из следующих способов: начальной затяжкой с помощью специальных пружин или других упругих деталей, в том числе и самих колес (за счет упругой деформации материала колес); собственной массой узла или машины; центробежной силой. Переменная сила прижатия достигается с помощью специальных прижимных механизмов.

Фрикционные передачи состоят из двух катков (рис.9.1): ведущего 1 и ведомого 2, которые прижимаются один к другому силой (на рисунке — пружиной), так что сила трения в месте контакта катков достаточна для передаваемой окружной силы .

Рис.9.1. Цилиндрическая фрикционная передача:

1 — ведущий каток; 2 — ведомый каток

 

Условие работоспособности передачи:

(1)

Нарушение условия (1) приводит к буксованию и быстрому износу катков. Для того чтобы передать заданное окружное усилие , фрикционные катки надо прижать друг к другу усилием так, чтобы возникающая при этом сила трения была бы больше силы на величину коэффициента запаса сцепления , который принимают равным = 1,25...2,0.

Значения коэффициента трения между катками в среднем:

- сталь или чугун по коже или ферродо насухо f = 0,3;

- то же в масле f = 0,1;

- сталь или чугун по стали или чугуну насухо f = 0,15;

- то же в масле f = 0,07.

Подставив эти значения в уравнение, можно убедиться в том, что усилие прижатия фрикционных катков во много раз превышает передаваемое окружное усилие.

 Межосевое расстояние

.

Диаметр ведущего катка

.

Диаметр ведомого катка

.

Рабочая ширина обода катка

,

где = 0,2 - 0,4 — коэффициент ширины обода катка по межосевому рас­стоянию.

Для компенсации неточности монтажа на практике ширину малого катка (см. рис.9.1) принимают, мм:

.

 

Силы в передаче.

Для обеспечения работоспособности фрикционных передач необходи­мо прижать катки (см. рис.9.4) силой нажатия таким образом, чтобы со­блюдалось условие (1), т. е.

где максимальная сила трения; передаваемая окружная сила; — коэффициент трения (выбирается по табл.1). Отсюда сила нажатия или

, (2)

где коэффициент запаса сцепления; вводится для предупреждения пробуксовки от перегрузок в период пуска передачи (для силовых передач = 1,25 - 1,5; для передач приборов = 3 - 5).

По схеме, показанной на рис.9.4,

. (3)

По конструкции и назначению различают фрикционные передачи нескольких видов. Простейшая фрикционная передача между параллельными валами — это цилиндрическая передача (рис. 1). Самая простая фрикционная передача между валами с пересекающимися осевыми линиями - коническая передача (рис. 2). Угол между валами конической передачи может быть любым, но в большинстве случаев он равен 90°. Для правильной работы колес конической передачи оба конуса должны иметь общую вершину.

Недостатки фрикционных передач

  • большой силой прижатия колес друг к другу и отсюда повышенным износом колес и подшипников;

  • пониженным к. п. д. передачи;

  • непостоянством передаточного отношения из-за проскальзывания колес и соответственно невозможностью применения передачи в тех случаях, когда передаточное отношение должно быть точным;

  • необходимостью применения специальных прижимных устройств для взаимного прижатия колес.

  • Вместе с тем фрикционные передачи имеют ряд достоинств:

  •  возможность бесступенчатого регулирования угловой скорости ведомого вала;

  •  равномерность вращения колес, вследствие чего передачи работают без шума и могут применяться при высоких скоростях;

  •  предохранение деталей машины от поломок из за возрастания сопротивления на ведомом валу, так как колеса при этом проскальзывают (пробуксовывают) одно относительно другого.

47. Корпусные детали: конструкции, основные параметры и элементы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]