Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
DM_i_OK.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
3.51 Mб
Скачать
  1. Классификация, основные характеристики и примеры конструкций с механическими передачами.

    Механическая передача — механизм, служащий для передачи и преобразования механической энергии от энергетической машины до исполнительного механизма (органа) одного или более, как правило с изменением характера движения (изменения направления, сил, моментов и скоростей). Как правило, используется передача вращательного движения. Классификация

  • Передачи зацепления:

    • Цилиндрические зубчатые передачи - отличаются надёжностью и имеют высокий ресурс эксплуатации. Обычно применяются при особо сложных режимах работы, для передачи и преобразовывания больших мощностей. Цилиндрические передачи бывают прямозубыми, косозубыми и шевронными.

      • Прямозубые цилиндрические передачи легко изготавливать, но при их работе возникает высокий шум, они создают вибрацию и из-за этого быстрее изнашиваются.

      • Косозубчатые цилиндрические передачи обладают хорошей плавностью работы, низким уровнем шума и хорошими эксплуатационными характеристиками. Существенный недостаток - возникают осевые силы, из-за которых приходится делать более жёсткую конструкцию корпуса редуктора.

      • Шевронные цилиндрические передачи обладают крайне высокой плавностью работы. Шестерни этих передач представляют собой сдвоенные косозубые шестерни, но они имеют больший угол зубьев, чем косозубые. Стоимость изготовления шевронных зубчатых колес высокая, они требуют специализированных станков и высокой квалификации рабочих.

    • Конические зубчатые передачи в отличие от цилиндрических имеют пересекающиеся оси входных и выходных валов. Применяются если необходимо изменить направление кинетической передачи.

    • червячные - представляют собой механическую передачу от винта, называемого червяком на зубчатое колесо, называемое червячным колесом. Отличаются высоким передаточным отношением, относительно низким КПД. Червяки бывают однозаходные и многозаходные. Передаточное отношение червячного редуктора определяется как отношение количества зубьев на червячном колесе к количеству заходов на червяке.

    • гипоидные (спироидные);

    • цепные;

    • зубчатыми ремнями;

    • винтовые.

    • Волновая передача - сравнительно нова, отличается крайне высоким передаточным отношением. Имеет относительно малый вес и высокую[источник не указан 1183 дня] износостойкость. Принцип работы - генерация волн на гибком колесе, которое имеет чуть меньшее количество зубьев чем жёсткое колесо и смещение одного колеса относительно другого на их разницу зубьев за один оборот генератора волн.

  • Передачи трения:

    • фрикционные;

    • ремённые.

  • Способ соединения ведущего и ведомого звена:

    • непосредственный контакт (зубчатые, фрикционные, винтовые, червячные);

    • с гибкой дополнительной связью (ремённые, цепные).

  • По управляемости делятся на:

    • с фиксированным передаточным числом

    • со ступенчато изменяемым передаточным числом (коробка передач)

    • с плавно изменяемым передаточным числом (вариатор)

Назначение передач в основном состоит в понижении или повышении частоты вращения двигателя или иного источника вращательного движения с соответствующим повышением или понижением вращающего момента. Планетарными называются передачи, имеющие зубчатые колеса с подвижными осями. Эти передачи (рис. 2.9) состоят из центральных колес наружного a и внутреннего b зацепления (часто используются устаревшие названия, соответственно солнечное колесо и эпицикл). Центральные колеса а и b находятся в зацеплении с сателлитами g, вращающимися вокруг осей, установленных в водиле Н, которое тоже вращается. Сателлиты, вращаясь вокруг собственных осей, вращаются, кроме того, и вокруг центрального колеса а, подобно планетам вокруг Солнца. Отсюда и название передачи. Волновые передачи кинематически представляют собой планетарные передачи с одним сателлитом в виде гибкого венца g (рис. 2.10). Этот гибкий венец упруго деформируется генератором волн Н (в данном случае специальным гибким подшипником  l ) и входит в зацепление с жестким центральным колесом b, в данном случае в двух зонах. Как видно, в зацепление входят много зубьев, до 50 % всех зубьев колеса, с чем связана высокая несущая способность волновой передачи. Ведь у обычных зубчатых передач в зацепление входят лишь 1 ...2 % зубьев.

Рис. 2.10. Схема волновой передачи:

b — центральное колесо; g — венец; l — подшипник; H — генератор волн; nH — частота вращения ведущего звена; ng — частота вращения ведомого звена

  1. Трение и износ в машинах. Роль и свойства смазочных материалов; конструкционные методы повышения износостойкости.

    Тре́ние — процесс взаимодействия тел при их относительном движении (смещении) либо при движении тела в газообразной или жидкой среде. По-другому называется фрикционным взаимодействием. Сила трения Виды При наличии относительного движения двух контактирующих тел силы трения, возникающие при их взаимодействии, можно подразделить на:

  • Трение скольжения — сила, возникающая при поступательном перемещении одного из контактирующих/взаимодействующих тел относительно другого и действующая на это тело в направлении, противоположном направлению скольжения.

  • Трение качения — момент сил, возникающий при качении одного из двух контактирующих/взаимодействующих тел относительно другого.

  • Трение покоя — сила, возникающая между двумя контактирующими телами и препятствующая возникновению относительного движения. Эту силу необходимо преодолеть для того, чтобы привести два контактирующих тела в движение друг относительно друга. Возникает при микроперемещениях (например, при деформации) контактирующих тел. Она действует в направлении, противоположном направлению возможного относительного движения.

В физике взаимодействия трение принято разделять на:

  • сухое, когда взаимодействующие твёрдые тела не разделены никакими дополнительными слоями/смазками (в том числе и твердыми смазочными материалами) — очень редко встречающийся на практике случай. Характерная отличительная черта сухого трения — наличие значительной силы трения покоя;

  • граничное, когда в области контакта могут содержаться слои и участки различной природы (окисные плёнки, жидкость и так далее) — наиболее распространённый случай при трении скольжения.

  • смешанное, когда область контакта содержит участки сухого и жидкостного трения;

  • жидкостное (вязкое), при взаимодействии тел, разделённых слоем твёрдого тела (порошком графита), жидкости или газа (смазки) различной толщины — как правило, встречается при трении качения, когда твёрдые тела погружены в жидкость, величина вязкого трения характеризуется вязкостью среды;

  • эластогидродинамическое, когда решающее значение имеет внутреннее трение в смазывающем материале. Возникает при увеличении относительных скоростей перемещения.

Трение в механизмах и машинах

В большинстве традиционных механизмов (ДВС, автомобили, зубчатые шестерни и пр.) трение играет отрицательную роль, уменьшая КПД механизма. Для уменьшения силы трения используются различные натуральные и синтетические масла и смазки. В современных механизмах для этой цели используется также напыление покрытий (тонких плёнок) на детали.

Сцепление с поверхностью

Наличие трения обеспечивает возможность перемещаться по поверхности.

Точно так же обеспечивается сцепление колёс автомобиля (мотоцикла) с поверхностью дороги. В частности, для увеличения улучшения этого сцепления разрабатываются новые формы и специальные типы резины для покрышек, а на гоночные болиды устанавливаются антикрылья, сильнее прижимающие машину к трассе. Износ деталей в сочленениях в одних случаях нарушает герметичность рабочего пространства (например, в поршневых машинах), в других - нормальный режим смазки, в третьих - кинематическую точность механизма. В результате понижается мощность двигателей, увеличивается расход горюче-смазочных материалов, возникает опасность утечки ядовитых и взрывоопасных продуктов, понижаются точность и чистота обработки изделий на станках. Следует добавить, что все это еще вызывает дополнительные нагрузки, удары и вибрации в сопряжениях и часто становится причиной аварий. Износ деталей в сочленениях в одних случаях нарушает герметичность рабочего пространства (например, в поршневых машинах), в других - нормальный режим смазки, в третьих - кинематическую точность механизма. В результате понижается мощность двигателей, увеличивается расход горюче-смазочных материалов, возникает опасность утечки ядовитых и взрывоопасных продуктов, понижаются точность и чистота обработки изделий на станках. Следует добавить, что все это еще вызывает дополнительные нагрузки, удары и вибрации в сопряжениях и часто становится причиной аварий. эффект безызносности. Сущность его состоит в следующем: в паре трения сталь - медь, сталь - бронза или сталь - латунь из твердого раствора благодаря разрушению межатомных связей выделяется медь. Выделившаяся чистая медь переносится на поверхность стали в виде слоя толщиной около тысячной доли миллиметра. Открытие эффекта безызносности знаменует собой исполнение вековечной мечты инженеров: трение есть, а износа нет. Износ — изменение размеров, формы, массы или состояния поверхности изделия или инструмента вследствие разрушения (изнашивания) поверхностного слоя изделия при трении.

Износ деталей машин зависит от:

  • условий трения,

  • свойств материалов,

  • конструкции.

Сма́зочные материа́лы — твёрдые, пластичные, жидкие и газообразные вещества, используемые в узлах трения автомобильной техники, индустриальных машин и механизмов, а также в быту для снижения износа, вызванного трением. Назначение и роль смазочных материалов (смазок и масел) в технике

Смазочные материалы широко применяются в современной технике, с целью уменьшения трения в движущихся механизмах (двигатели, подшипники, редукторы, и.т д), и с целью уменьшения трения при механической обработке конструкционных и других материалов на станках (точение, фрезерование, шлифование и т. д.). В зависимости от назначения и условий работы смазочных материалов (смазок), они бывают твёрдыми (графит, дисульфид молибдена, иодид кадмия, диселенид вольфрама, нитрид бора гексагональный и т. д.), полутвёрдыми, полужидкими (расплавленные металлы, солидолы, консталины и др), жидкими (автомобильные и другие машинные масла), газообразными (углекислый газ, азот, инертные газы).

    Большинство отказов машин связано с износом зубьев зубчатых муфт, их поломкой или увеличением выше допустимого предела вибраций машин, вызванных увеличением зазора в зацеплении муфты.   Для решения этой проблемы необходимо увеличивать число зубьев передающих нагрузку за счет изменения конструкции ступицы обоймы или втулки, уменьшения ширины зуба втулки и увеличения расстояния между зубчатыми венцами втулок. Большое значение в вопросе снижения износа зубьев зубчатых муфт имеет правильный выбор смазки, которая должна сводить к минимуму образование частиц износа, тем самыми уменьшая абразивный износ. Кроме того, смазка должна предупреждать появление контактной коррозии, а впоследствии схватывание и заедание. Максимальный эффект достигается применением масел с присадками.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]