
- •Вопрос 2. Типовой объем работ при текущем ремонте
- •Вопрос 3.
- •Вопрос 1.Конструкция, область применения и принцип действия автоматических выключателей.
- •Вопрос 2. Типовой объем работ по ремонту систем возбуждения синхронных электродвигателей на напряжение 6(10)кВ
- •Вопрос 3.Дать определение, что такое «электрическая сеть»?
- •Вопрос 4. Максимальная токовая защита (мтз). Принцип действия
- •Вопрос 5. Маркировка взрывозащищенного электрооборудования
- •Вопрос 3. Категории электроприемников по надежности электроснабжения (пуэ)
- •Вопрос 5. Безопасный экспериментальный максимальный зазор
- •Вопрос 2. Типовой объем работ по ремонту оборудования ору питающих подстанций на напряжение от 35 до 110кВ
- •Вопрос 3.Заземление электроустановок до 1кВ. Дать определение системы tn-c
- •Вопрос 4.Какие меры применяют для защиты от поражения электрическим током в случае повреждении изоляции.
- •Вопрос 5. «Взрывобезопасное электрооборудование». Область применения.
- •Вопрос 1.Назначение, устройство и принцип действия высоковольтных вакуумных выключателей типа вв/тел. Преимущества и недостатки;
- •Вопрос 2.Типовой объем работ по ремонту силовых трансформаторов питающих подстанций на напряжение от35 до 110кВ
- •Вопрос 3. Конструкция и принцип действия отделителя од-35/600
- •Вопрос 4. Знаки температурного класса взрывозащищенного электрооборудования.
- •Вопрос 5. Заземление электроустановок до 1кВ. Дать определение системы tn-s
- •Вопрос 1. Классификация систем электроизмерительных приборов, область применения;
- •Вопрос 2. Типовой объем работ по ремонту силовых трансформаторов на напряжение 6(10) кВ
- •Вопрос 3. Технические мероприятия, обеспечивающие безопасность работ в электроустановках?
- •Вопрос 4. Каким должно быть сечение проводников основной системы уравнивания потенциалов?
- •Вопрос 5. Перечислить взрывоопасные зоны согласно пуэ
- •Вопрос 1. Основные условные обозначения, применяемые на шкалах электроизмерительных приборов.
- •Вопрос 2. Типовой объем работ по ремонту оборудования комплектных трансформаторных подстанций на напряжение 6(10) кВ.
- •Вопрос 3. Дать определение что такое «взрыво защищенное электрооборудование
- •Вопрос 4. Способы пуска электродвигателей переменного тока
- •Вопрос 5. Проведение отключений при выполнении технических мероприятий.
- •Вопрос 1.Перечислите основные системы электромеханических приборов.
- •Вопрос 2. Типовой объем работ по ремонту источников бесперебойного питания.
- •Вопрос 3. Классификации взрывоопасных смесей газов и паров с воздухом в зависимости бэмз.
- •Вопрос 4. Устройство и принцип действия длинно искрового разрядника.
- •Вопрос 5. Какие заземляющие устройства используются на нпс.
- •Вопрос 1. Защитное действие заземления основано на двух принципах:
- •Вопрос 2. В то включаются следующие работы:
- •Вопрос 5. Pen проводник это совмещенный нулевой рабочий (n) и нулевой защитный (pe) проводники в электроустановках напряжением до 1 кВ с глухозаземленной нейтралью.
- •1. Назначение, устройство и принцип действия контактора.
- •Вопрос 2. Типовой объем работ по ремонту устройств заземления и молниезащиты.
- •3.Перечислите температурные классы взрывозащищенного электрооборудования.
- •Вопрос 4. Назначение, устройство элегазового выключателя. Преимущество и недостатки.
- •Вопрос 5. Требования, предъявляемые к pe-проводникам.
- •Вопрос 1. Назначение, устройство и принцип действия разрядников и опн.
- •Вопрос 2. Типовой объем работ по ремонту устройств релейной защиты.
- •Вопрос 3. Требование к персоналу обслуживающему взрывозащищенное оборудование.
- •Вопрос 4. Порядок проведения верхового осмотра вдольтрассовых вл.
- •5. Требования к заземляющим проводникам в электроустановках до 1кВ
- •Вопрос 4. Организация работ, выполняемых в порядке текущей эксплуатации согласно перечню(2.4.)
- •Вопрос 5. Защита от прямых ударов молнии
- •Вопрос 1) Одним из самых главных недостатков асинхронных электродвигателей с короткозамкнутым ротором является наличие у них больших пусковых токов.
- •Вопрос 2) в объеме технического обслуживания проводятся следующие работы:
Вопрос 4. Порядок проведения верхового осмотра вдольтрассовых вл.
Осмотр не реже 1 раза в 8 лет, заполнение журнала, дефектную ведомость и акт.
-исправность траверса
-исправность изоляторов
-разрушение элементов заземления
-загнивание древесины
5. Требования к заземляющим проводникам в электроустановках до 1кВ
Ответ: Заземляющий проводник, присоединяющий заземлитель рабочего (функционального) заземления к главной заземляющей шине в электроустановках напряжением до 1 кВ, должен иметь сечение не менее: медный —10 мм2, алюминиевый —16 мм2, стальной — 75 мм2.
Для выполнения измерений сопротивления заземляющего устройства в удобном месте должна быть предусмотрена возможность отсоединения заземляющего проводника. В электроустановках напряжением до 1 кВ таким местом, как правило, является главная заземляющая шина. Отсоединение заземляющего проводника должно быть возможно только при помощи инструмента.
Билет 18. ???
Билет 19.
Вопрос:1. Назначение, устройство и принцип действия бесщеточного синхронного электродвигателя СТД-5000.
Турбодвигатели синхронные серий СТД, СТДП, СТДМ, СТД2 мощностью 630…12500 кВт двухполюсные трёхфазного тока частотой 50 и 60 Гц предназначены для привода насосов, компрессоров, газовых нагнетателей, воздуходувок и других быстроходных механизмов, эксплуатируемых в районах с умеренным и тропическим климатом.
Двигатели серии СТДП предназначены для эксплуатации во взрывоопасных помещениях всех классов Технические характеристики
Двигатели серий СТД, СТДМ, СТДП выполнены на фундаментных плитах с двумя стояковыми подшипниками и одним рабочим концом вала, а двигатели серии СТД2 на подшипниках скольжения, встроенных в щиты. Двигатели серий СТД, СТДМ и СТД2 мощностью до 5000 кВт изготавливаются с замкнутым и разомкнутым циклом вентиляции. Степень защиты IP44(з.ц.в.) и IP22(р.ц.в.).
Охлаждение двигателей с замкнутым циклом вентиляции осуществляется встроенными воздухоохладителями, работающими на пресной или морской воде. Выброс нагретого воздуха двигателей с разомкнутым циклом вентиляции осуществляется через жалюзи в корпусе статора. Возбуждение двигателей серий СТД, СТДМ и СТД2 осуществляется от тиристорных возбудителей серии ВТЕ 10-315 или от бесщёточных возбудительных устройств серии БВУ, двигателей серии СТДП — от бесщёточных возбудительных устройств серии БВУП, двигателя СДГМ-12500-2УЗ и СДГ-12500-2 УХЛ3.1 — от возбудителя типа ВТЕ 630/150Т-УХЛЗ.
Синхронная машина состоит из двух основных частей: неподвижной - статора и вращающейся - ротора, и имеет две основные обмотки. Одна обмотка подключается к источнику постоянного тока. Протекающий по этой обмотке ток создает основное магнитное поле машины. Эта обмотка располагается на полюсах и называется обмоткой возбуждения. Иногда у машин небольшой мощности обмотка возбуждения отсутствует, а магнитное поле создается постоянными магнитами. Другая обмотка является обмоткой якоря. В ней индуктируется основная ЭДС машины. Она укладывается в пазы якоря и состоит из одной, двух или трех обмоток фаз. Наибольшее распространение в синхронных машинах нашли трехфазные обмотки якоря.
В синхронных машинах чаще всего находит применение конструкция, при которой, обмотка якоря располагается на статоре, а обмотка возбуждения - на роторе (рис. 1). Синхронные машины небольшой мощности иногда имеют обращенное исполнение, когда обмотка якоря располагается на роторе, а обмотка возбуждения - на полюсах статора (рис. 2). В электромагнитном отношении обе конструкции равноценны.
Рассмотрим принцип действия синхронного генератора. Если через обмотку возбуждения протекает постоянный ток, то он создает постоянное во времени магнитное поле с чередующейся полярностью. При вращении полюсов и, следовательно, магнитного поля относительно проводников обмотки якоря в них индуктируются переменные ЭДС, которые, суммируясь, определяют результирующие ЭДС фаз.
Если на якоре уложены три одинаковые обмотки, магнитные оси которых сдвинуты в пространстве на электрический угол, равный 120°, то в этих обмотках индуктируются ЭДС, образующие трехфазную систему. Частота индуктируемых в обмотках ЭДС зависит от числа пар полюсов р и частоты вращения ротора п:
f1 = pn/60. |
(1) |
Для получения ЭДС необходимой частоты число пар полюсов и частота вращения должны находиться в определенной зависимости между собой. Так, для получения стандартной частоты f1= 50 Гц при р=1 нужно иметь частоту вращения n = 3000 об/мин, а при р = 24 n = 125 об/мин.
Если к трехфазной обмотке якоря синхронного генератора подсоединить нагрузку, то возникший ток создаст вращающееся магнитное поле якоря. Частота вращения этого поля относительно статора
n1 = 60 f1/p. |
(2) |
Заменяя в (2) частоту ее значением из (1), получаем
n1 = n.
Равенство частот вращения ротора п и поля якоря n1 является характерной особенностью синхронной машины, обусловившей ее название.
В основном конструктивном варианте магнитное поле возбуждения имеет ту же частоту вращения, что и ротор, поэтому результирующее магнитное поле, созданное совместным действием обмоток якоря и возбуждения, имеет ту же частоту вращения. В обращенном варианте синхронной машины частоты вращения ротора (который в данном случае является якорем) и его поля также одинаковы, но направлены в противоположные стороны. Поэтому магнитное поле ротора, как и поле возбуждения, будет неподвижно в пространстве. Следовательно, как в одном, так и в другом случае магнитные поля возбуждения и якоря будут неподвижны относительно друг друга, образуя результирующее поле машины.
При работе синхронной машины двигателем трехфазная обмотка якоря присоединяется к трехфазной сети. При этом образуется вращающееся магнитное поле с частотой вращения n1. Это поле, взаимодействуя с полем полюсов ротора, создает вращающий момент. Чтобы этот момент имел одно и то же направление, поля должны быть неподвижны относительно друг друга. Это имеет место, если ротор и, следовательно, его магнитное поле вращаются с частотой, равной n1. Поэтому в синхронном двигателе ротор как при холостом ходе, так и при нагрузке вращается с постоянной частотой, равной частоте вращения поля n1.
Вопрос:2. Электрическая схема реверсивного управления электродвигателя с короткозамкнутым ротором.
Устройство. Трехфазный асинхронный электродвигатель с короткозамкнутым ротором состоит из корпуса 7, неподвижного статора 6, вращающего ротора и двух подшипниковых щитов 4 с подшипниками качения или скольжения, расположенными в центре щитов (рис. 1). Статор двигателя состоит из сердечника 6 и трехфазной обмотки 8. Корпус изготовляется из чугуна или из алюминиевых сплавов.
Сердечник статора (рис. 2, а) набирается из штампованных листов электротехнической стали толщиной 0,3 или 0,5 мм, изолированных друг от друга покраской лаком для уменьшения потерь на вихревые токи. На внутренней поверхности сердечника имеются открытые пазы для укладки в них трехфазной обмотки, выполненной из изолированного провода. Оси обмоток расположены симметрично под углом 120° друг к другу.
Ротор (рис. 2, б) асинхронного электродвигателя состоит из вала, опирающегося на подшипники, сердечника и обмотки. Сердечник ротора набирается из штампованных листов электротехнической стали. На внешней поверхности сердечника имеются пазы, в которых размещаются медные или алюминиевые стержни обмотки ротора без изоляции. Концы стержней путем сварки или литья под давлением соединяются с кольцами. В результате получается короткозамкнутая обмотка ротора, напоминающая беличье колесо (рис. 3).
Рис. 1 Устройство трехфазного электродвигателя |
|
|
1 - вал ротора, 2 - крышка подшипника, 3 - подшипник, 4 - подшипниковый щит, 5 - пакет ротора, 6 - сердечник статора, 7 - корпус, 8 - обмотка, 9 - кожух вентилятора, 10 - вентилятор, 11 - коробка выводов. |
|
|
|
Рис. 2, а Статор асинхронного электродвигателя 1 - сердечник, 2 - скоба, 3 - паз. Рис. 2, б Ротор короткозамкнутый |
|
Рис. 3 Короткозамкнутая обмотка ротора асинхронного электродвигателя |
Каждая обмотка-фаза электродвигателя переменного тока имеет маркировку, приведенную ниже.
|
|
по ГОСТ 183-74 |
|
по ГОСТ 2.709-89 |
||||
Фазы |
I |
II |
III |
I |
II |
III |
||
Начала |
C1 |
C2 |
C3 |
U1 |
V1 |
W1 |
||
Концы |
C4 |
C5 |
C6 |
U2 |
V2 |
W2 |
Принцип действия
Принцип действия асинхронного электродвигателя основан на взаимодействии индуктированного тока ротора с магнитным потоком статора. При включении обмотки трехфазного двигателя под напряжение источника трехфазного переменного тока внутри расточки статора образуется вращающееся магнитное поле, частота вращения которого равна
n1 = 60fp ,
где n1 - частота вращения магнитного поля, об/мин; f - частота тока, Гц; p - число пар магнитных полюсов двигателя.
Силовые линии вращающегося магнитного поля пересекают стержни короткозамкнутой обмотки ротора, и в них индуктируется ЭДС, которая вызывает появление тока и магнитного потока в роторе двигателя.
Взаимодействие магнитного поля статора с магнитным потоком ротора создает механический вращающий момент, под действием которого ротор начинает вращаться. Частота вращения ротора несколько меньше частоты вращения магнитного поля. Поэтому двигатель называется асинхронным.
Величина, характеризующая отставание ротора от магнитного поля в относительных единицах, называется скольжением, подсчитывают ее по формуле
S = (n1−n2)/n1,
где S - скольжение (относительная угловая скорость); n1 - частота вращения магнитного поля, об/мин; n2 - номинальная частота вращения ротора, об/мин.
Для включения двигателя в сеть его статорные обмотки должны быть соединены в "звезду" или "треугольник".
Рис. 4 Схемы соединения: а - треугольник, б - звезда. |
|
Для включения двигателя по схеме «треугольник» нужно начало первой обмотки соединить с концом второй, начало второй обмотки - с концом третьей и начало третьей - с концом первой. Места соединения обмоток подключают к трем фазам сети (рис. 4, а).
Чтобы двигатель включить в сеть по схеме «звезда», нужно все концы обмоток соединить электрически в одну точку, а все начала обмоток присоединить к фазам сети (рис. 4, б).
Схемы включения всегда приводятся на обратной стороне крышки, закрывающей коробку выводов электродвигателя.
Для изменения направления вращения трехфазного асинхронного электродвигателя достаточно поменять местами две любых фазы сети независимо от схемы включения электродвигателя. Для быстрого изменения направления вращения двигателя применяют реверсивные рубильники, пакетные выключатели или реверсивные магнитные пускатели.
Трехфазный асинхронный электродвигатель с короткозамкнутым ротором наряду с простотой конструкции, высокой надежностью в работе, долговечностью, низкой стоимостью и универсальностью, обладает одним существенным недостатком: при его пуске возникает пусковой ток, значение которого в 5-7 раз больше номинального. Большой пусковой ток, на который электрическая сеть обычно не рассчитана, вызывает значительное снижение напряжения, что, в свою очередь, отрицательно влияет на устойчивую работу соседних электроприемников.
Чтобы уменьшить пусковые токи трехфазных асинхронных короткозамкнутых двигателей больших мощностей, их включают с помощью переключателя схем со "звезды" на "треугольник". При этом сначала обмотки двигателя соединяются по схеме "звезда", потом, после того как ротор двигателя наберет номинальную частоту вращения, его обмотки переключаются в схему "треугольник".
Снижение пускового тока двигателя при переключении его обмоток со звезды на треугольник происходит потому, что вместо предназначенной для данного напряжения сети схемы "треугольник" каждая обмотка двигателя включается на напряжение в √3 раз меньшее, а потребляемый ток снижается в три раза. Снижается также в три раза и мощность, развиваемая электродвигателем при пуске. Поэтому изложенный способ снижения пускового тока можно использовать лишь при нагрузке не более 1/3 номинальной.
На каждом электрическом двигателе должен быть технический паспорт в виде металлической пластинки, укрепленной на его корпусе. В паспорте трехфазного асинхронного электродвигателя приводятся его основные технические данные, тип электродвигателя, заводской номер, соответствие стандартам, номинальные: напряжение, ток, мощность, частота вращения, коэффициент мощности, коэффициент полезного действия, масса и др.
Вопрос:3. Периодичность осмотров взрывозащищенного электрооборудования электросетей применяемые ОАО « АК «Транснефть».
смотр электрооборудования и сетей проводится эксплуатационным электротехническим персоналом в сроки, регламентируемые местными инструкциями с учетом состояния электрооборудования и сетей, среды, условий работы, загрузки и т.д., но не реже одного раза в неделю. Осмотр внутренних частей электрооборудования напряжением до 1 кВ и выше проводятся только после отключения электрооборудования от сети. При осмотрах необходимо обращать внимание на: 1. Степень коррозии, покраску труб, крепление. Особое внимание следует обращать на отсутствие люфта в местах присоединения труб к электрооборудованию. Люфт допускается проверять покачиванием труб. Крышки фитингов должны быть завернуты до отказа. 2. Исправное состояние вводов проводов и кабелей в электрооборудование. 3. Целостность стекол смотровых окон электрооборудования и стеклянных колпаков. 4. Исправное состояние заземления. 5. Наличие избыточного давления воздуха (30-50Па) в помещениях с электродвигателями, валы которых пропущены через стену в смежное взрывоопасное помещение и уплотнены в месте прохода через стену сальниковыми уплотнениями. 6. Наличие предупредительных надписей и знаков маркировки исполнения электрооборудования. 7. Наличие всех предусмотренных конструкцией болтов, крепящих элементы оболочки. 8. Температуру отдельных узлов электрооборудования, если это предусмотрено его конструкцией. Температура не должна превышать значений, приведенных в инструкциях заводов-изготовителей. Температура наружных поверхностей взрывозащищенного электрооборудования не должна превышать значений, соответствующих его температурному классу, указанному в маркировке взрывозащиты. 9. Отсутствие вблизи электрооборудования капежа и пылеобразования. 10. Совпадение порядкового номера на электрооборудовании и технологическом оборудовании. 11. Для электрооборудования с видом взрывозащиты “взрывонепроницаемая оболочка” на: а) отсутствие трещин, сколов, вмятин на его оболочке; б) наличие пломб (если они предусмотрены). 12. Для электрооборудования с видом взрывозащиты “маслонаполненное” на: а) уровень масла в оболочке, который должен соответствовать инструкции завода-изготовителя; б) температуру верхнего слоя масла, если конструкцией предусмотрен замер температуры. Температура верхнего слоя масла должна соответствовать инструкции завода-изготовителя, или, при отсутствии таких указаний, не превышать 100оС для температурных классов Т1 – Т4, и 80оС – для Т5, Т6; в) цвет масла; г) отсутствие течи масла. 13. Для электрооборудования с видом защиты “продуваемое под избыточным давлением” на: а) целостность уплотнений; б) исправную работу системы продувки (вентиляторов, фильтров и т.д.); в) исправность и показания измерительных приборов, контролирующих давление воздуха в корпусе; г) исправность и показания измерительных приборов, контролирующих температуру корпуса, подшипников, а также входящего и выходящего воздуха. 14. Для электрооборудования с видом взрывозащиты “искробезопасное” на: а) исправную работу приборов; б) наличие пломб; в) отсутствие повреждений соединительных проводов и кабелей. 15. Для электрооборудования с видом взрывозащиты “повышенная надежность против взрыва” - на наличие уплотнительных прокладок. 16. Для электрооборудования с видом взрывозащиты “специальное” необходимо руководствоваться инструкциями, прилагаемыми к электрооборудованию. Электроустановки, выведенные из работы на срок больше суток, должны перед включением также быть подвергнуты указанным осмотрам. Объем осмотра электрооборудования может быть изменен местной инструкцией. О результатах осмотра электрооборудования электротехнический персонал должен сделать запись в оперативном журнале. Внеочередные осмотры электроустановки должны проводиться после автоматического отключения средствами защиты. При этом должны быть приняты меры против самовключения установки или включения ее посторонним лицом.
Все электрические машины, аппараты, а также другое электрооборудование и электропроводка во взрывоопасных зонах должны периодически, но не реже одного раза в три месяца, подвергаться наружному осмотру лицом, ответственным за электрохозяйство предприятия, или назначенными им лицами с занесением результатов осмотра в оперативный журнал (журнал осмотра).
Вопрос:4. Устройство автотрансформатора и его предназначение.
Автотрансформатор – это трансформатор, в котором первичная и вторичная обмотки объединены в общую электрическую цепь. Следовательно, число обмоток автотрансформатора вдвое меньше , чем число обмоток трансформатора; в однофазном автотрансформаторе – одна , а в трехфазном – три (на каждую фазу по одной). Таким образом добиваются уменьшения массы, размеров и стоимости автотрансформатора.
На рисунке №1 приведены схемы однофазного (а) и трехфазного (б) автотрансформаторов. Подобную схему имеет например, вольтодобавочный автотрансформатор ЛТМ (400 кВА, 10 кВ и 630 кВА, 35 кВ) с шестью ступенями переключения напряжения, причем каждая ступень изменяет напряжение на 2,5 %.
Если автотрансформатор по схеме а понижающий, то первичную обмотку образуют все витки, к которым подведено напряжение U1 сети. При этом каждый виток окажется под напряжением
(1),
где w1 – число витков, включенных в сеть.
Вторичное напряжение U2 пропорционально числу витков w2 , с которых снимает напряжение:
Таким образом, при холостом ходе, когда потери напряжения на обмотках ничтожны, справедливо соотношение
(2),
Значит напряжение, снимаемое с автотрансформатора, есть доля первичного сетевого напряжения.
В режиме нагрузки ток вторичной обмотки по правилу Ленца ослабляет своим магнитным потоком магнитный поток первичной обмотки. Поэтому ток I2 направлен противоположно току I1 и в общей обмоток он равен разности токов I1-I2 . Такое же противоположное направление имеют токи в обычном трансформаторе. Соотношение между токами, как отмечалось в разделе “Трансформатор”,
(3),
Поэтому общую часть обмотки автотрансформатора можно изготовить из провода меньшего сечения (когда коэффициент трансформации k2).
Основное преимущество автотрансформаторов перед трансформаторами – меньший расход меди и стали. Уменьшаются также тепловые потери в железе и меди. Однако автотрансформаторам свойственны и существенные недостатки. Изоляция их рассчитывается на наибольшее напряжение, так как обмотки соединены между собой, и поэтому стоимость ее высока. Выполнение условий безопасности усложняется, ибо если первичное напряжение высокое, то витки вторичной обмотки будут находиться под высоким потенциалом. Поэтому автотрансформаторы применяют, например, в тех случаях, когда необходимо преобразовать напряжение в небольших пределах. При высоких напряжениях автотрансформаторы выгоднее использовать там, где требуется изменять напряжение в 1,5 …2 раза, а при низких – не более чем в 3 раза. Лабораторные автотрансформаторы (ЛАТР) применяют в лабораторной практике для плавного регулирования напряжения U2 от 0 до 250 В.
Трехфазные автотрансформаторы часто вводят в схемы пуска мощных двигателей переменного тока при пониженных токах. Сеть присоединяют к зажимам А,В,С а двигатель в момент пуска – к зажимам а,b,с. После того как двигатель разовьет достаточную скорость вращения, его быстро переключают на сеть, а автотрансформатор отключают.
В отличии от трансформатора в автотрансформаторе для преобразования напряжения используется не только магнитная связь, но и их прямое или встречное последовательное соединение. Принципиальные схемы однофазного автотрансформатора и соединения его первичных обмоток показаны на рис.№2.
В случаях рис.№2 а и б в процессе преобразования напряжение повышается, в случаях в и г - понижается. В силовых автотрансформаторах обычно применяются схемы с прямым включением обмоток (рис.№2 а и г). Схемы с обратным включением обмоток (рис.№2 б и в) используются только при регулировании напряжения путём реверсирования регулировочной обмотки.
Как было сказано выше, на преобразование напряжения при помощи автотрансформаторов затрачивается меньше активных материалов, чем на преобразование обычным трансформатором. Это снижает также потери мощности, связанные с процессом преобразования. По расходу активных материалов и снижению потерь применение автотрансформаторов тем выгоднее, чем меньше напряжение U отличается от напряжения U. При расчёте двухобмоточного автотрансформатора следует исходить из его расчётной мощности
SP = U1I1 = U2I2, отнесённой к одной фазе. Например, в случае если требуется повысить ( или понизить ) напряжение в 2 раза, расчётная мощность автотрансформатора должна быть равна половине его номинальной мощности.
При расчёте трёхобмоточного автотрансформатора следует исходить из условий его работы (повышение или понижение напряжения) и мощностей отдельных обмоток
S1 = U1I1, S2 = U2I2, S3 = U3I3.
В этом случае расчётная типовая мощность одной фазы автотрансформатора будет:
Основное преимущество автотрансформаторов перед трансформаторами – его меньшая стоимость – сказывается тем сильнее, чем ближе отношение U/U к единице.
Основным недостатком автотрансформатора, вытекающим из наличия электрической связи его обмоток, является возможность появление высокого напряжения на стороне НН.
Силовые автотрансформаторы получили широкое применение для связи сетей близких напряжений, например 110 и 220, 220 и 500 кВ и т.п. В этих случаях они выполняются на значительные мощности нагрузки , доходящие до 500 МВА и выше. Мощные автотрансформаторы изготавливаются как в однофазном исполнении, так и в трёхфазном исполнении. В автотрансформаторах, предназначенных для трёхфазных сетей, помимо двух основных обмоток, имеющих автотрансформаторную связь и соединение по схеме звезда с заземлённой нейтралью, предусматриваются дополнительные обмотки, обычно низшего напряжения, соединённые треугольником. Наличие таких обмоток приводит к выравниванию фазных напряжений при несимметричной нагрузке, а также устраняет появление в фазных напряжениях основных обмоток ЭДС тройной частоты. Номинальная мощность обмотки НН составляет 0т 20 до 50 % номинальной (проходной) мощности автотрансформатора. Наиболее широкое применение в сетях высокого напряжения получили трёхобмоточные автотрансформаторы, у которых обмотки ВН и СН соединены последовательно (в звезду) и образуют автотрансформатор, а обмотка НН, соединённая в треугольник, не имеет электрической связи с двумя другим обмотками.
В автотрансформаторах различают:
- электромагнитную мощность – мощность, передаваемую автотрансформатором из одной сети в другую с помощью электромагнитной индукции, равную мощности общей или последовательной обмотки автотрансформатора;
- электрическую мощность – мощность, непосредственно передаваемую автотрансформатором из одной сети в другую электрическим путём благодаря гальванической связи между соответствующими обмотками, равную произведению напряжения общей обмотки на ток последовательной обмотки автотрансформатора и коэффициент, учитывающий число фаз;
- проходную мощность – мощность, передаваемую автотрансформатором из одной сети в другую, равную сумме его электромагнитной и электрической мощностей.
Номинальная мощность автотрансформатора – номинальная проходная мощность обмоток, имеющих общую часть (под обмотками понимаются обмотки ВН и НН в двухобмоточных автотрансформаторах и обмотки СН и ВН в трёхобмоточном автотрансформаторе).
Автотрансформаторы имеют меньшее индуктивное сопротивление, чем двухобмоточный трансформатор, и поэтому в меньшей степени ограничивает токи КЗ.
UK,HOM = uK (%)
v= 1 – 1/n
n = WAX/Wax – коэффициент автотрансформации.
Вопрос:5. Меры безопасности при выполнении работ на электродвигателях.
1.2.1. Лица, принимаемые на работу по обслуживанию тепломеханического оборудования, должны пройти предварительный медицинский осмотр и в дальнейшем проходить его периодически в установленные сроки.
1.2.6. У лиц, обслуживающих оборудование основных цехов электростанций и тепловых сетей, и лиц, допущенных к выполнению специальных работ, должна быть сделана об этом запись в удостоверении о проверке знаний
1.2.8. Обучение и повышение квалификации персонала электростанций должно производиться в соответствии с Правилами организации работы с персоналом на предприятиях и в учреждениях энергетического производства (ПОРП-89).
1.2.9. Персонал, допускаемый к обслуживанию тепломеханического оборудования, в котором для технологических нужд применяются горючие, взрывоопасные и вредные вещества, должен знать свойства этих веществ и правила безопасности при обращении с ними.
1.2.11. Весь персонал должен быть обеспечен по действующим нормам спецодеждой, спец. обувью и индивидуальными средствами защиты в соответствии с характером выполняемых работ и обязан пользоваться ими во время работы.
1.2.12. Персонал должен работать в спецодежде, застегнутой на все пуговицы. На одежде не должно быть развевающихся частей, которые могут быть захвачены движущимися (вращающимися) частями механизмов.
При нахождении в помещениях с действующим энергетическим оборудованием весь персонал должен надевать застегнутые подбородным ремнем защитные каски.
1.2.13. Весь производственный персонал должен быть практически обучен приемам освобождения человека от действия электрического тока и оказания ему доврачебной помощи, а также приемам оказания доврачебной помощи пострадавшим при других несчастных случаях.
Билет 20.
Вопрос 1. Силовые кабели применяются для передачи электрической энергии на высоком и низком напряжении. Самое важное преимущество кабельных линий в долговечности и почти полной независимости от атмосферных воздействий. Силовые кабели любого напряжения состоят из 1.токопроводящих жил(выполняются из меди или алюминия. По форме сечения жилы изготавливаются круглыми, секторными и сегментными. В зависимости от числа токопроводящих жил силовые кабели бывают одно-,двух-,трёх и четырёх- жильными.), 2.изоляционных оболочек(предназначены для изоляции токоведущих жил друг от друга (фазная изоляция) и от земли (поясная изоляция). Изолирующие оболочки могут быть выполнены из резины, пластиков и бумаги, пропитанной маслоканифольным составом) 3.защитных оболочек(служат для защиты изолирующих оболочек от разрушения при проникновении влаги и от механических повреждений. Защитные оболочки, образующие герметический слой вокруг изоляционных оболочек, выполняются из свинца, алюминия или пластмасс)
Кабель на напряжение 1-10 кВ. 1 - Токопроводящая жила 2-Фазнаяизоляция, 3-Пояснаяизоляция, 4-свинцовая или алюминиевая изоляция 5-подушка,6-броня, 7 - защитные покровы
Кабель на напряжение до 1кВ.
1 - токопроводящая жила, 2 - изоляция, 3 - обмотка прорезиненной лентой (или пластик), 4 - заполнение, 5 - обмотка лентой, 6 - оболочка, 7 - броня, 8 - защитные покровы
Вопрос 2.?
Вопрос 3.?
Вопрос 4. проверка отсутствия напряжения
1. Проверять отсутствие напряжения необходимо указателем напряжения, исправность которого перед применением должна быть установлена с помощью предназначенных для этой цели специальных приборов или приближением к токоведущим частям, заведомо находящимся под напряжением. В электроустановках напряжением выше 1000 В пользоваться указателем напряжения необходимо в диэлектрических перчатках. В электроустановках напряжением 35 кВ и выше для проверки отсутствия напряжения можно пользоваться изолирующей штангой, прикасаясь ею несколько раз к токоведущим частям. Признаком отсутствия напряжения является отсутствие искрения и потрескивания. На одноцепных ВЛ напряжением 330 кВ и выше достаточным признаком отсутствия напряжения является отсутствие коронирования. 2. В РУ проверять отсутствие напряжения разрешается одному работнику из числа оперативного персонала, имеющему группу IV, - в электроустановках напряжением выше 1000 В и имеющему группу III, - в электроустановках напряжением до 1000 В.
На ВЛ проверку отсутствия напряжения должны выполнять два работника: на ВЛ напряжением выше 1000 В - работники, имеющие группы IV и III, на ВЛ напряжением до 1000 В - работники, имеющие группу III. 3. Проверять отсутствие напряжения выверкой схемы в натуре разрешается: в ОРУ, КРУ и КТП наружной установки, а также на ВЛ при тумане, дожде, снегопаде в случае отсутствия специальных указателей напряжения; в ОРУ напряжением 330 кВ и выше и на двухцепных ВЛ напряжением 330 кВ и выше. При выверке схемы в натуре отсутствие напряжения на вводах ВЛ и КЛ подтверждается дежурным, в оперативном управлении которого находятся линии.
Выверка ВЛ в натуре заключается в проверке направления и внешних признаков линий, а также обозначений на опорах, которые должны соответствовать диспетчерским наименованиям линий. 4. На ВЛ напряжением 6 - 20 кВ при проверке отсутствия напряжения, выполняемой с деревянных или железобетонных опор, а также с телескопических вышек, указателем, работающим на принципе протекания емкостного тока, за исключением импульсного, следует обеспечить требуемую чувствительность указателя. Для этого его рабочую часть необходимо заземлять. 5. На ВЛ при подвеске проводов на разных уровнях проверять отсутствие напряжения указателем или штангой и устанавливать заземление следует снизу вверх, начиная с нижнего провода. При горизонтальной подвеске проверку нужно начинать с ближайшего провода. 6. В электроустановках напряжением до 1000 В с заземленной нейтралью при применении двухполюсного указателя проверять отсутствие напряжения нужно как между фазами, так и между каждой фазой и заземленным корпусом оборудования или защитным проводником. Допускается применять предварительно проверенный вольтметр. Запрещается пользоваться контрольными лампами. 7. Устройства, сигнализирующие об отключенном положении аппарата, блокирующие устройства, постоянно включенные вольтметры и т.п. являются только дополнительными средствами, подтверждающими отсутствие напряжения, и на основании их показаний нельзя делать заключение об отсутствии напряжения.
Вопрос 5. Из-за ухудшения или нарушения изоляции могут оказаться под напряжением металлические части электрических аппаратов, машин, различных приборов и т. п., не предназначенные для прохождения по ним тока. От прикосновения человека к таким частям будет создана опасность поражения его электрическим током. Защитное заземление выполняют как раз для того, чтобы избежать и исключить эту опасность. Защитное заземление – это преднамеренное электрическое соединение с землей нетоковедущих металлических частей, которые могут оказаться под электрическим напряжением.
Заземлитель – это проводник или совокупность различных металлически соединенных между собой проводников, находящихся в соприкосновении с землёй. Таким заземлителем может быть, например, отрезок трубы, специально забитый вертикально в землю, металлические полосы, расположенные горизонтальна в земле, рельса или лист, а так же провод без изоляции.
Заземляющий проводник осуществляет соединение заземлителей с заземляемой частью электрооборудования (электроустановки). Сопротивление заземляющего электрического устройства не должно превышать 4 Ом. В таких случаях исключаются все возможные поражения током, даже если человек прикоснётся к корпусу электрического двигателя, электрощитка и т. п., оказавшемуся под напряжением.
Периодически заземляющие устройства проверяют на надлежащее состояние. Заземляющие проводники, находящиеся на открытом пространстве, окрашивают в черный цвет. К ним нужно иметь доступ чтобы осматривать их, но также это не относится к скрыто проложенным проводникам или же к проводникам, находящимся в земле. Но внешний осмотр заземляющего устройства – это не эффективный способ проверки. Чтобы окончательно убедится в том, что проводник работоспособен, нужно измерить его электрическое сопротивление. В таких целях используют специальный прибор – измеритель сопротивления заземления. Возможно такое что высокой точности результатов измерения сопротивления не требуется, и его можно измерить косвенно и определить его с помощью вольтметра или же амперметра.
Кроме защитного заземления, в целях защитить людей от поражения током, осуществляют зануление. Это также преднамеренное электрическое соединение металлических нетоковедущих частей электроустановки, которые различным образом могут оказаться под напряжением, с глухо заземленной нейтралью генератора или трансформатора.
Билет 21.
Вопрос 1. Тиристорный регулятор напряжения типа ТРН (в дальнейшем «регулятор») предназначен для питания активной или активноиндуктивной нагрузки регулируемым напряжением и питается от трехфазной сети. Питание должно выполняться через предохранители или автоматический выключатель с кратностью тока отсечки 3Iн.Управление может быть как пофазное независимое, так и общее на три фазы. Регулировка напряжения выполняется за счет изменения угла открытия силовых тиристоров. Нагрузка к регулятору может быть подключена через разделительный трансформатор. Система управления позволяет работать в двух режимах: регулирование напряжения на нагрузке пропорционально внешнему управляющему сигналу; поддержание тока нагрузки, величина которого определяется внешним управляющим сигналом. Управляющим сигналом может быть источник напряжения с диапазоном 0...+ 5 В или 0...+ 10 В, или источник тока 0...20 мА. Регулятором также можно управлять с использованием шины RS—485 по протоколу MODBUS RTU.По отдельному заказу к регулятору может быть поставлен пульт дистанционного управления ПДУ—ТРН—02, который позволяет реализовать режим «Ручное / Автоматическое управление» (RS—485) и может быть удален от ТРН на расстояние 100–200 м.В экстренных случаях (потеря связи с верхним уровнем управления) ТРН может управляться от встроенного пульта.Конструктивно регуляторы выпускаются в металлических корпусах (IP22) двух типоразмеров в зависимости от тока нагрузки.
Вопрос 2. Любое самое качественное, прочное и устойчивое наружное освещение рано или поздно потребует ремонтных действий – это неизбежно при эксплуатации осветительных систем. Объемы работ ремонта наружного освещения всегда зависят от сложности системы и количества светильников. Состояние системы и уровень её изношенности также влияют на ремонт освещения. Мы разделяем ремонты наружного освещения на предупредительный (профилактический), текущий и аварийный (требует срочного вмешательства). Текущий и предупредительный ремонт требует устранения незначительных поломок, обнаруженных во время планового осмотра оборудования. Это может быть замена опор, кронштейнов исветильников, или устройств заземления. Аварийный ремонт освещения предполагает немедленное устранение неисправностей. Наиболее частые проблемы с осветительным оборудованием, которые заставляют заказчиков обращаться к специалистам «Сити Свет Монтаж»: выход из строя части светильников, внезапная поломка всех светильников в цепи, плохая мощность ландшафтного освещения (оно тусклое или часто отключается). Это далеко не весь перечень проблем, которые появляются во время эксплуатации осветительных приборов, но Вы можете быть уверены, что в компании «Сити Свет Монтаж» Вам обязательно помогут с ремонтом освещения, который связан с устранением не только мелких поломок, но и крупных аварий. Качество работы и соблюдение норм безопасности гарантируется!
Вопрос 3. Во взрывоопасных зонах могут применяться электрические светильники при условии, что уровень их взрывозащиты или степень защиты соответствуют табл. 7.3.12 или являются более высокими.В помещениях с взрывоопасными зонами любого класса со средой, для которой не имеется светильников необходимого уровня взрывозащиты, допускается выполнять освещение светильниками общего назначения (без средств взрывозащиты) одним из следующих способов: а) через неоткрывающиеся окна без фрамуг и форточек, снаружи здания, причем при одинарном остеклении окон светильники должны иметь защитные стекла или стеклянные кожухи;
б) через специально устроенные в стене ниши с двойным остеклением и вентиляцией ниш с естественным побуждением наружным воздухом; в) через фонари специального типа со светильниками, установленными в потолке с двойным остеклением и вентиляцией фонарей с естественным побуждением наружным воздухом; г) в коробах, продуваемых под избыточным давлением чистым воздухом. В местах, где возможны поломки стекол, для застекления коробов следует применять небьющееся стекло; д) с помощью осветительных устройств с щелевыми световодами.