Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конструирование !!!!!!!!!!!!.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
3.54 Mб
Скачать

Базирование конических, сферических и фасонных тел.

На базировании конических тел останавливаться подробно не будем, оно аналогично базированию цилиндрических тел. Для исключения поворота вокруг оси конус должен иметь дополнительный элемент, как и цилиндр (риску, стопорное отверстие или шпоночный паз).

Для базирования сферических тел используют сферическую поверхность её центр и оси симметрии. Чтобы обеспечить устойчивое положение шара при базировании в прямоугольной системе координат необходимо наложить три связи на три точки сферической поверхности, к примеру, базированием в упор с плоскостями выбранной системы координат. В этом случае три точки будут являться тремя опорными базами, которые лишают тело трех степеней свободы – перемещений вдоль координатных осей.

Если шар базируется с использованием центра (самоцентрирующее приспособление с двумя обратными конусами), он также лишается трех степеней свободы. В этом случае функцию опорных баз выполняет центр шара. Как и в случае с цилиндром, для полного базирования шара необходимы дополнительные элементы (метки, риски или пазы), тогда появляется возможность наложить дополнительные связи, которые лишат шар оставшихся трех степеней свободы (трех поворотов вокруг осей координат). Любое фасонное тело можно представить сочетанием геометрических элементов рассмотренных выше. Эти элементы будут выполнять функцию баз и в комплекте образовывать системы координат, используемые для базирования заготовок или изделий.

Классификация баз по способу их проявления

По характеру проявления базы разделяют на явные и скрытые.

Скрытая база – база заготовки или изделия в виде воображаемой плоскости, оси или точки.

Явная база – база заготовки или изделия в виде реальной поверхности, разметочной риски или точки пересечения рисок.

В заключение следует сказать, что согласно ГОСТ 21495-76, полные и краткие наименования баз должны состоять из частей стандартизованных терминов видов баз, располагаемых в следующем порядке: по назначению; по лишаемым степеням свободы; по характеру проявления. Например, полное наименование – «основная установочная явная база», краткое наименование – «измерительная явная база»; «технологическая база».

Вопрос №11 Хуй знает Вопрос №12 Построение и расчет размерных цепей.

Для свободного вращения зубчатого колеса на оси необходим зазор АΔ . Величина АΔ получается автоматически при сопряжении деталей, контуры которых выделены. Если размеры их выполнены неверно либо зазора не будет вовсе, либо он будет слишком большой, что сделает невозможным нормальное функционирование узла. 

 

рис 4.2

 

Установим те размеры деталей, которые при сборке автоматически создадут необходимый зазор АΔ. Обозначив размеры деталей, которые влияют на зазор АΔ, мы тем самым построим размерную цепь.   Размерной цепью называется совокупность размеров, непосредственно участвующих в решении поставленной задачи и образующей замкнутый контур ГОСТ 16319-80. По виду задач, в решении которых цепи участвуют, они делятся на конструкторские, технологические и измерительные. Конструкторские размерные цепи решают задачу по обеспечению точности при конструировании. Они устанавливают связь размеров детали в изделии. На рис. 4.3 приведены примеры сборочных размерных цепей.

На рис. 4.3, а приведена элементарная сборочная размерная цепь, решающая задачу обеспечения точности сопряжения двух деталей. На рис 4.3, б тоже показана сборочная цепь, которая решает задачу обеспечения перпендикулярности поверхности 2 к оси 1, необходимой для базирования подшипника качения.

 

Технологические размерные цепи решают задачу по обеспечению точности при изготовлении машин. Они устанавливают связь размеров деталей на разных этапах технологического про- цесса. На рис. 4.4, а изображена деталь с размерами, которые следует выдержать при изготовлении.

 

Последовательность получения размеров

 На основании предложенного маршрута обработки построена технологическая размерная

цепь. При обработке детали выдерживаются размеры С1, С2, С3 , а размер С получается автоматически.

Измерительные размерные цепи решают задачу обеспечения точности при измерении. Они устанавливают связь между звеньями, которые влияют на точность измерения. Размеры, образующие размерную цепь, называются звеньями. В зависимости от расположения звеньев, цепи делятся на плоские (звенья расположены в одной или параллельных плоскостях) и пространственные. В зависимости от вида звеньев различают линейные размерные цепи (звеньями являются линейные размеры, см. рис. 4.2, 4.3, а) и угловые (см. рис. 4.3, б). Звенья линейной размерной цепи обозначают какой-либо одной прописной буквой русского алфавита с соответствующим числовым индексом, звенья угловых цепей – строчной буквой греческого алфавита. Любая размерная цепь состоит из составляющих звеньев и одного замыкающего. Замыкающее звено ( АΔ, БΔ, ВΔ и т.д.) – то звено, которое непосредственно не выдерживается, а получается в результате выполнения размеров составляющих звеньев. Составляющие звенья делятся на увеличивающие и уменьшающие. Увеличивающие звенья

(  A j→ , Б j →) - те, с увеличением которых замыкающее звено увеличивается, а уменьшающие ( А j← , Б j←) - те, с увеличением которых замыкающее звено уменьшается. При правильном определении увеличивающих и уменьшающих звеньев стрелки над буквами должны указывать движение в одном направлении по замкнутому контуру размерной цепи.

 Принципы построения конструкторских размерных цепей.

Перед тем как построить размерную цепь, следует выявить замыкающее звено, которое, допус- тим, определяет нормальное функционирование механизма. Размер или предельное отклонение за- мыкающего звена назначают или рассчитывают исходя из условий работы и (или) требуемой точно- сти. Например, размер и предельные отклонения АΔ (см. рис. 4.2) принимаются такими, которые обес- печивали бы свободное вращение зубчатого колеса при минимальном возможном смещении его вдоль оси. Несовпадение вершины делительного конуса конической шестерни с осью вращения ко- нического колеса (рис. 4.7, а, б) определяется степенью точности зубчатых колес, а его предельные значения находятся по соответствующему стандарту. В курсовом проекте замыкающее звено и допуск на него уже заданы. Надо только установить, ме- жду какими деталями стоит размер замыкающего звена, а затем связать эти детали цепью размеров. Например, на рис.4.5, б размер замыкающего звена стоит между осью и торцом зубчатого ко- леса; на рис. 4.7, а стоит между осью отверстия в корпусе и вершиной делительного конуса кони- ческого колеса и т.д. БΔ АΔ Рассмотрим наиболее типичные варианты сборочных размерных цепей *. Первый вид размерных цепей приведен на рис. 4.5, второй – на рис. 4.6, третий – на рис. 4.7. При построении размерных цепей следует руководствоваться их основными свойствами : • цепь должна быть замкнута; • размер любого звена сборочной цепи должен относиться к элементам одной и той же детали; исключением является замыкающее звено, которое всегда соединяет элементы разных деталей; • цепь должна быть проведена наикратчайшим способом, т.е. деталь своими элементами долж- на входить в размерную цепь только один раз.

 

 Основные соотношения размерных цепей.

Размерная цепь всегда замкнута. На основании этого свойства существует зависимость, которая связывает номинальные размеры звеньев. Для плоских размерных цепей с номинальными звеньями она имеет следующий вид:

где n и p – число соответственно увеличивающих и уменьшающих звеньев в размерной цепи. Для определения зависимости, которая связывает допуски звеньев в размерной цепи, найдем вначале наибольшее значение замыкающего звена:

 

затем наименьшее значение:

CΔ - Координата середины поля допуска замыкающего звена.

 

Из формулы следует, что разброс размеров замыкающего звена равен сумме разбросов раз- меров составляющих звеньев. Поэтому, чтобы обеспечить наибольшую точность замыкающего звена, размерная цепь должна состоять из возможно меньшего числа звеньев, т.е. необходимо при конструировании машин и проектировании технологических процессов соблюдать п р и н ц и п  н а и к р а т ч а й ш е й  р а з м е р н о й  ц е п и . Аналогичным образом находятся верхние отклонения замыкающего звена:

 

 Расчет размерных цепей.

Обычно при конструировании возникает необходимость определить параметры составляющих звеньев размерной цепи при известном замыкающем звене. Решением данной задачи может быть большое количество вариантов сочетаний допусков и предельных отклонений составляющих звеньев, лишь бы они удовлетворяли основным соотношениям. Обычно в прикидочных расчетах пользуются способом равных допусков, т.е.:

T1 = T2 Tm = ... 1 Tm 1 = ТΔ / m-1

 

При большой разнице в номинальных размерах составляющих звеньев такой способ является некорректным, так как к большим звеньям будут предъявляться более жесткие требования по точности. Смысл корректного расчета размерной цепи заключается в том, чтобы допуски на составляющие звеньев размерной цепи были бы одного или двух ближайших квалитетов.

 

Чтобы добиться одинаковых требований к точности изготовления составляющих звеньев, необходимо, чтобы коэффициенты k были бы одинаковыми у всех звеньев.

Значение k характеризует точность, с какой следует получать все составляющие звенья размерной цепи. Рассчитанное по формуле значение k в общем случае не будет соответствовать строго определенному квалитету, поэтому для назначения допусков на соответствующие звенья выбирают ближайшие квалитеты по табл.

 

 Квалитет

 5

6

7

8

9

10

11

12

13

14

15

16

17

 k

 7

10

16

25

40

64

100

160

250

400

640

1000

1600

 

Обеспечить заданную точность замыкающего звена можно методами ГОСТ 16320-80.

 

 Метод полной взаимозаменяемости. Метод, при котором требуется точность замыкающего звена размерной цепи, получается при любом сочетании размеров составляющих звеньев. При этом предполагают, что в размерной цепи одновременно могут оказаться все звенья с предельными значениями, причем в любом из двух наиболее неблагоприятных сочетаний (все увеличивающие звенья с верхними предельными размерами, а уменьшающие с нижними, или наоборот). Такой метод расчета, который учитывает эти неблагоприятные сочетания, называется методом расчета на максимум - минимум.

 

 Метод неполной взаимозаменяемости. Это метод, при котором требуемая точность замыкающего звена размерной цепи получается не при любых сочетаниях, а при ранее обусловленной части сочетаний размеров составляющих звеньев. Сборка осуществляется без пригонки, регулировки и подбора звеньев. Метод исходит из предположения, что сочетание действительных размеров составляющих звеньев в изделии носит случайный характер, и вероятность того, что все звенья с самыми неблагоприятными сочетаниями окажутся в одном изделии, весьма мала. Такой метод расчета, который учитывает рассеяние размеров и вероятность их различных сочетаний, называется вероятностным методом расчета. Другими словами, метод допускает малый процент изделий, у которых замыкающее звено выйдет за рамки поля допусков. При этом расширяются допуски составляющих цепь размеров, и тем самым снижается себестоимость изготовления деталей. Задачей расчета является назначение допусков на составляющие звенья, соответствующих одинаковой степени точности.

 

 Метод пригонки. Это метод, при котором требуемая точность замыкающего звена размерной цепи достигается изменением размера компенсирующего звена путем снятия с компенсатора слоя металла. Его суть состоит в том, что допуски на составляющие звенья назначаются по экономически приемлемым квалитетам, например, по 12-14-му квалитетам. Получающийся после этого у замыкающего звена избыток поля рассеяния при сборке устраняют за счет компенсатора. Смысл расчета заключается в определении припуска на пригонку, достаточного для компенсации величины превышения предельных значений замыкающего звена и вместе с тем наименьшего для сокращения объема пригоночных работ. Роль компенсатора обычно выполняет деталь, наиболее доступная при разборке механизма, несложная по конструкции и неточная, например, прокладки, шайбы, проставочные кольца и т.п.

 

 Метод регулирования с применением неподвижного компенсатора. Это метод, при котором требуемая точность замыкающего звена размерной цепи достигается изменением компенсирующего звена без снятия слоя металла. Его суть состоит в том, что избыток поля рассеивания замыкающего звена устраняют путем подбора компенсатора из некоторого количества компенсаторов, заранее изготовленных с различными размерами. Смысл расчета заключается в определении наименьшего количества компенсаторов в комплекте.

 

ЦЕПИ РАЗМЕРНЫЕ

Размерная цепь – совокупность размеров, образующих замкнутый контур и непосредственно участвующая в решении поставленной задачи. На чертежах размерная цепь оформляется незамкнутой, без обозначения размеров и отклонений одного из звеньев. В реальном объекте правильно составленная размерная цепь всегда замкнута. Последний (замыкающий) размер и поле допуска этого размера являются функцией остальных размеров. Все размеры цепи функционально взаимосвязаны и изменение любого из звеньев влечет за собой необходимость изменения как минимум еще одного звена.

В соответствии с определением целевое назначение размерной цепи зависит от решаемой задачи: обеспечение работоспособности конструкции (конструкторские цепи), обеспечение точности изготовления (технологические цепи), обеспечение точности измерения (измерительные цепи).

В одном объекте могут быть разные размерные цепи, причем некоторые из них могут включать одни и те же звенья. Звенья размерной цепи – размеры (элементы), образующие размерную цепь. Все звенья, входящие в цепь, называют составляющими звеньями размерной цепи. Звено, которое технологически получается последним в размерной цепи (при изготовлении или при сборке), называют замыкающим звеном.

Правильно рассчитанные размерные цепи обеспечивают нормальное функционирование реального объекта за счет нужных ограничений исходных звеньев. Исходное звено размерной цепи – звено, номинальное значение и отклонения которого должны быть обеспечены в ходе создания размерной цепи, поскольку они определяют функционирование изделия. В качестве примеров можно рассматривать зазоры в направляющих скольжения или по высоте шпонки в призматическом сопряжении. В процессе сборки изделия исходный размер, как правило, становится замыкающим. Размер замыкающего звена может быть положительным, отрицательным или равным нулю.

 

В зависимости от влияния на замыкающее звено элементы размерной цепи делят на увеличивающие и уменьшающие звенья. Размерная цепь обозначается прописной буквой (например Б), ее звенья – той же буквой с индексами (Б1, Б2, Б3…). Увеличивающие и уменьшающие звенья обозначаются с использованием либо соответствующих индексов (Б1 ув, Б2 ум), либо со стрелками над буквой (увеличивающие со стрелкой вправо, уменьшающие – влево).

Исходным материалом для линейной или угловой размерной цепи является чертеж, но для решения могут применяться специально составленные схемы (рис. А 13.1).

Размерные цепи классифицируют по разным признакам:

- трехзвенные (сопряжения двух деталей), многозвенные (более трех звеньев);

- линейные и угловые (возможны также электрические, пневматические и др.);

- пространственные, плоские, плоские с параллельными звеньями;

- подетальные и сборочные;

- независимые и взаимосвязанные (в том числе – производные, в которых исходным звеном является одно из составляющих звеньев основной размерной цепи);

- конструкторские, технологические и измерительные.

Размерная цепь обеспечивает функционирование объекта, поэтому задачи на составление и расчет размерных цепей являются основными в процессе проектирования. Расчет размерной цепи фактически представляет собой расчет изделия на точность. Размерные цепи рассчитывают одним из двух методов: расчет на максимум-минимум (по предельным размерам) и вероятностный расчет. Расчеты направлены на решение одной из двух задач:

  • распределение предельных размеров и допуска исходного звена на остальные составляющие звенья цепи ("проектный расчет", называемый иногда "прямая задача");

  • определение предельных размеров и допуска замыкающего звена по предельным размерам и допускам составляющих звеньев размерной цепи ("проверочный расчет", "обратная задача").

В производстве используют два пути достижения требуемой точности исходного (замыкающего) звена: метод полной взаимозаменяемости и метод "неполной" или "ограниченной взаимозаменяемости". К разновидностям последнего метода можно отнести селективную сборку (или "групповую взаимозаменяемость"), индивидуальный подбор деталей или специальных прокладок, компенсацию с помощью пригонки или с использованием специальных регулировочных устройств (рис.Х.Х).

Селективная сборка имеет ограниченное применение, поскольку такие недостатки "групповой взаимозаменяемости", как удорожание производства за счет сортировки деталей и наличие незавершенной продукции (из-за некомплектности деталей) компенсируются только в серийном или массовом производстве. Индивидуальный подбор деталей является фактическим отказом от взаимозаменяемости, значительно повышает трудоемкость, но позволяет использование взаимозаменяемых деталей с расширенными допусками, особенно при включении в конструкцию цепи специальных прокладок, играющих роль индивидуально подбираемых компенсаторов.

Компенсация недостатков размерной цепи с помощью пригонки (технологическая компенсация с доработкой отдельных деталей, которые выполняются с заранее предусмотренным припуском) требует достаточно высокой трудоемкости (сборка, определение необходимого размера для доработки, пригонка и повторная сборка). Достоинством этого решения является простота конструкции, в которую либо включают специально для этого введенные в цепь дорабатываемые детали простейшей формы, технологичные в сборке и пригонке, либо дополнительные детали вообще не включают в цепь, обходясь пригонкой наиболее технологичных деталей, включенных в исходную конструкцию изделия.

Использование в размерной цепи специальных регулировочных устройств существенно сокращает трудоемкость и время получения сложного изделия по сравнению с применением технологической компенсации. К недостаткам такого решения следует отнести усложнение конструкции, как правило, сопровождающееся повышением ее трудоемкости, увеличением габаритов и массы. Дополнительными достоинствами регулировок в конструкции обычно является возможность компенсации износа деталей, например, широко применяемые в микрометрических приборах устройства компенсации зазоров в микропаре винт-гайка используют не только при изготовлении, но и для компенсации износа деталей в процессе эксплуатации микрометров, а устройство настройки на ноль – после их ремонта (притирки) изношенных пяток.

Для любого из методов обеспечения точности замыкающего звена может быть использован либо вероятностный расчет цепи, либо расчет на максимум-минимум. Расчет на максимум-минимум технически проще (что при современном уровне вычислительной техники не принципиально).

При расчете на максимум-минимум

Номинальный размер замыкающего звена:

                                                                                                 n                 m

АΔ = ΣАi ув – ΣАj ум;

   i=1                j=1

Предельные размеры замыкающего звена:

                       n                          m

АΔ max = ΣАi ув max – ΣАj ум min;

                      i=1                       j=1

n                        m

          АΔ min = ΣАi ув min – ΣАj ум max;

i=1                    j=1

Допуск замыкающего звена:

                                                                                                n                     m

ТАΔ = ΣТАi ув + ΣТАj ум;

i=1                  j=1

или допуск замыкающего звена размерной цепи равен сумме допусков остальных составляющих звеньев.

При расчете цепей с непараллельными звеньями допуск замыкающего звена приходится рассчитывать с учетом коэффициентов влияния (ξ) изменения каждого из звеньев на изменение замыкающего звена:

 

                                                                                                            m

ТАΔ = Σξ iТАi;

  i=1

При решении проектной задачи применяют разные методы распределения допуска замыкающего звена на допуски составляющих элементов: метод одинаковых квалитетов, метод равных допусков, метод равного влияния допусков непараллельных звеньев, "метод попыток" (метод проб и ошибок). После решения проектной задачи обычно следует проверочный расчет, корректировка допусков и опять проверочный расчет. Вот почему все эти методы следует рассматривать как пригодные только для предварительного решения, тем более что окончательные значения допусков звеньев согласовывают со стандартными значениями.

Простейшей размерной цепью является посадка, которая содержит только три звена: увеличивающее (размер отверстия), уменьшающее (размер вала) и замыкающее (зазор). Очевидно, что размер замыкающего звена может быть положительным (посадка с зазором), нулевым и отрицательным (посадка с натягом). На формальных расчетах размерных цепей знак и значение замыкающего звена никак не сказываются.

Расчеты размерных цепей на максимум-минимум как правило не соответствуют сути большинства технологических процессов, поскольку эти расчеты фактически рассматривают случаи наихудшего сочетания наихудших звеньев. Вероятность подобных сочетаний настолько мала, что для цепей с большим числом звеньев ее можно считать практически не встречающейся. Возможность учета вероятностных (стохастических) проявлений производства привела к появлению вероятностных расчетов размерных цепей.

Вероятностно рассчитывают только допуски, поскольку номинальные и предельные размеры получают по тем же формулам, что и для расчета на максимум-минимум. С учетом определенного риска получения бракованного изделия, коэффициентов влияния (ξ) изменения каждого из звеньев на изменение замыкающего звена и вида случайного распределения размеров звеньев:

             ____________

ТАΔ = t√ Σξ i2ki2(ТАi) 2  ,

где t – коэффициент, определяющий вероятность получения бракованной цепи из годных звеньев,

ki – коэффициент, характеризующий отличие распределения i-того звена от нормального распределения (коэффициент относительного рассеяния).

В зависимости от закона распределения параметров i-того звена принимают разные значения коэффициентов ki. Для нормального распределения размеров (отклонений) i-того звена принимают k = 1/3. Распределение полагают равновероятным, если ничего не известно о характере распределения размеров звена, рассматривая этот вариант распределения как наихудший. Для равновероятного распределения принимают k = 1/√3  .

Значение коэффициента t зависит от принимаемого процента риска Р. Соотношения t и Р для случая нормального распределения замыкающего звена и при совпадении центра группирования с координатой середины поля допуска этого звена приведены в таблице А 13.1.

Вероятностные расчеты можно проводить на основании определенных допущений о видах распределения случайных размеров каждого из звеньев цепи, принимая в качестве границ рассеяния предельные размеры звена. Можно также проводить уточненные расчеты на основании использования информации о технологических процессах получения звеньев, для чего необходимо получить данные о виде и параметрах распределения размеров каждого звена. В таком расчете вместо допуска используют поле практического рассеяния параметра, вместо координаты середины поля допуска – центр группирования размеров звена. Такие расчеты требуют не только исследований результатов изготовления изделия, что очень трудоемко, но и начала производства, после чего расчет размерных цепей можно использовать для корректирования конструкции изделия и рационализации технологии его получения.

Таблица А 13.1

Значения коэффициента t, соответствующие выбираемому проценту риска Р

Параметр

Числовое значение

Процент риска Р

32

10

4,50

1,00

0,27

0,10

0,01

Коэффициент t

1,00

1,65

2,00

2,57

3,00

3,29

3,89