
- •Основания теории оптимизации (теоремы о необходимости и достаточности существования экстремума функции многих переменных).
- •5.2.Достаточные условия экстремума.
- •Матрица Гессе и вектор-градиент функции многих переменных. Привести пример определения (функцию многих переменных задать самостоятельно).
- •Методы одномерного поиска экстремума. Метод золотого сечения.
- •Методы одномерного поиска экстремума. Метод поиска с использованием чисел Фибоначчи.
- •Методы одномерного поиска экстремума. Метод квадратической интерполяции.
- •Графический метод решения задач квадратичного программирования.
- •Метод множителей Лагранжа.
- •Алгоритм обобщенного метода множителей Лагранжа.
- •Градиентные методы решения задач нелинейного программирования.
- •Метод тяжелого шарика.
- •Эвристические методы поиска экстремума. Метод Монте-Карло.
- •Гомеостат Эшби и его связь со случайным поиском.
- •Методы случайного поиска.
- •Алгоритм случайного спуска с линейной тактикой
- •Алгоритмы эволюционной оптимизации. Муравьинный алгоритм.
- •Алгоритмы эволюционной оптимизации. Роевой алгоритм.
- •В чем состоит смысл когнитивной составляющей алгоритма поиска с роевым интеллектом?
- •Виды игр (безкоалиционные, кооперативные, дифференциальные и другие).
- •Игра двух участников с нулевой суммой. Решение игры двух участников с нулевой суммой в смешанных стратегиях.
- •Графо-аналитический метод решения матричной игры 2 х n и m х 2.
- •Решение игр вида 2хn и mх2
Виды игр (безкоалиционные, кооперативные, дифференциальные и другие).
кооперативные Теория игр занимается изучением конфликтов, то есть ситуаций, в которых группе людей необходимо выработать какое-либо решение, касающееся их всех. Некооперативная теория игр изучает то, как должны действовать игроки, чтобы прийти к тому или иному результату, кооперативная же теория игр изучает вопрос о том, какие исходы достижимы и условия достижения этих исходов.
Согласно определению, кооперативной игрой называется пара (N,v), где N — это множество игроков, а v — это функция: 2N → R, из множества всех коалиций в множество вещественных чисел (так называемая характеристическая функция). Предполагается, что пустая коалиция зарабатывает ноль, то есть v(∅) = 0. Характеристическая функция описывает величину выгоды, которую данное подмножество игроков может достичь путем объединения в коалицию. Подразумевается, что игроки примут решение о создании коалиции в зависимости от размеров выплат внутри коалиции.
Монотонность — свойство, при котором у больших (в смысле включения) коалиций выплаты больше: если
.
Супераддитивность — свойство, при котором для любых двух непересекающихся коалиций A и B сумма их выгод по отдельности не больше их выгоды при объединении:
Выпуклость — характеристическая функция является выпуклой:
Простые игры — особый вид кооперативных игр, где все выплаты это 1 или 0, то есть коалиции либо «выигрывают», либо «проигрывают». Простая игра называется правильной, если:
.
Значение этого: коалиция выигрывает тогда и только тогда, когда дополняющая коалиция (оппозиция) проигрывает.
В соответствии с определением кооперативной игры, множество игроков N в совокупности обладает некоторым количеством определенного блага, которое надлежит разделить между участниками. Принципы этого деления и называются решениями кооперативной игры.
Решение может быть определено как для конкретной игры, так и для класса игр. Естественно, что наибольшей важностью обладают как раз те принципы, которые применимы в широком спектре случаев (то есть для обширного класса игр).
Решение может быть как однозначным (в этом случае для каждой игры решением является единственное распределение выигрышей), так и многозначным (когда для каждой игры могут быть определены несколько распределений). Примерами однозначных решений служат N-ядро и вектор Шепли, примерами многозначных — C-ядро иK-ядро.
Дифференциальные игры — раздел математической теории управления, в котором изучается управление объектом в конфликтных ситуациях (см. теория игр). В дифференциальных играх возможности игроков описываются дифференциальными уравнениями или дифференциальными включениями, содержащими управляющие векторы, которыми распоряжаются игроки. Для выбора своего управления каждый игрок может использовать лишь текущую информацию о поведении игроков. Различают дифференциальные игры двух игроков и многих игроков.
Наиболее
исследованными являются дифференциальные
игры преследования,
в которых количество игроков равно 2,
одного называют догоняющим, другого
убегающим. Цель догоняющего —
приведение вектора
на
заданное множество
за
возможно короткое время; цель убегающего —
по возможности оттянуть момент
прихода вектора
на
.
Основополагающие результаты в
дифференциальных играх получены в 60-е
гг. 20 в.
в СССР Л. С. Понтрягиным, Н. Н. Красовским,Е. Ф. Мищенко,
Б. Н. Пшеничным и др., в США — Р.
Айзексом,
Л. Берковицем, У. Флемингом и др.
Первым, кто исследовал дифференциальные игры, стал Руфус Айзекс (работа 1951 года, впервые опубликована в 1965 году). А одна из первых проанализированных им игр стала игра «Шофёр-убийца» (homicidal chauffeur game). Надо отметить, что сам Айзекс вместо «шофёра» и «пешехода» подразумевал торпеду и увёртывающийся от неё небольшой катер.[1]