
- •Методыка выкладання матэматыкі і практыкум па рашэнню задач
- •Дадатковая
- •Рэпрадуктыўныя, калі вучань выконвае заданні па ўзору (пісьмовае складанне трохзначных лікаў);
- •Варыятыўныя, калі вучань выбірае правільны адказ з некалькіх прапанаваных адказаў;
- •Творчыя, калі патрабуецца скласці новую задачу, рашыць праблемную задачу, прымяніць свае веды ў новых нестандартных ўмовах.
- •1) Калі лік а пры лічэнні называюць раней ліку в, то а менш в для любых натуральных лікаў. Гэта агульнае сцвярджэнне, якое называюць агульнай пасылкай. Абазначаюць: а(х) в(х).
- •2) 7 Пры лічэнні называюць раней, чым 8. Другое сцвярджэнне носіць прыватны характар. Яго называюць прыватнай пасылкай: а(а).
- •1. Праблемнае навучанне.
- •2..Праграмаванае навучанне
- •3, Пошукова-даследчая тэхналогія навучання..
- •1)Праблемнае ізлажэнне, пры якім настаўнік сам стварае праблемную сітуацыю, сам вылучае з яе праблему і ставіць праблемную задачу, сам яе рашае, сам правярае, ацэньвае ход і вынік рашэння;
- •2)Раблемна-пошукавы, або эўрыстычны, калі да пастаноўкі і рашэння, праверкі і ацэнкі вынікаў рашэння праблемнай задачы прыцягваюцца вучні;
- •3)Даследчы, калі пасля стварэння праблемнай сітуацыі настаўнікам пошукавую дзейнасць па пастаноўцы задачы, яе рашэнню, праверцы, ацэнцы хода і вынікаў рашэння вучні выконваюць самастойна.
- •1) Лінейнай, калі пасля вывучэння кожнай порцыі матэрыялу вучнем фармулюецца і правяраецца адказ на пытанне і пасля гэтага вывучаецца наступная порцыя;
- •2) Разгалінаванай, калі пасля вывучэння порцыі матэрыялу выбіраецца вучнем адзін з адказаў на пытанне, а пры няправільным выбары адказу тлумачыцца памылка і перавучваецца матэрыял;
- •3) Адаптыўнай, калі спалучаюцца абодва віды праграм у адпаведнасці з індывідуальнамі асаблівасцямі вучня. Праграмаванае навучанне можа ажыццяўляцца праз вучэбныя дапаможнікі або з прымяненнем эвм.
- •1. Прочитайте задачу1-ый уч. ----- кг
- •1Нструктаж па выкананню пройдзенаму матэрыялу
- •2) Визуальные, 3) аудиальные, 4) аудиавизуальные
- •1 Эпидиаскопы Радио Кодоскопы 2 3 Проигрыв.
- •П раводзіцца па-за ўрокаў з вучнямі не толькі аднаго, але і некалькіх класаў на добраахвотных асновах, якія вызначаюцца ўмовамі:
- •Прыёмы вучэбнай работы характэрызуюць спосабы здзяйснення вучэбнай дзейнасці. Яны падпарадкаваны вучэбным задачам, якія патрабуюць прымянення таго або іншага прыёма, ужо засвоенага вучнямі або новага.
- •1. Параўнанне канкрэтных велічынь ( даўжыні, плошчы, аб’ёму) спачатку “на вока”, а затым накладаннем, прыкладаннем, пераліваннем і г. Д.
- •2. Мадэляванне велічынь адрэзкамі. Параўненне велічынь з дапамогай адрэзкаў. Напрыклад:
- •5.Увядзенне мерак па вымярэнню велічынь. Мадэляванне велічынь адрэзкамі. Вымярэнне адрэзкаў меркай і паяўленне паслядоўнасці цэлых неадмоўных лікаў.
- •6. Пераход да меншай меркі і ўвядзенне дзеяння множання.
- •8. З дапамогай мадэлявання і пераходу да мерак у 10 разоў большых (меншых) за дадзеную ўводзяцца таксама дзесятковыя дробы, працэнты і дзеянні над імі.
- •Логическиеметоды: анализ и синтез, абстрагиро-вание и конкретизация, сравнение и аналогия, эмпирическое обобщение, рассуждения по индукции и дедукции;
- •1.Паўтарэнне прыёмаў складання і аднімання на аснове нумарацыі двухзначных лікаў.
- •3.Складанне, калі лік дапаўняецца да 10 і на аснове складу ліку вызначаецца і дадаецца да 10 лік, які застаўся.
- •4.Адніманне ад двухзначнага адназначнага ліку, калі памяншаемае прадстаўляецца ў выглядзе сумы двух складаемых, адно з якіх роўна аднімаемаму:
- •1) Калі лік а пры лічэнні называюць раней ліку в, то
- •2) 7 Пры лічэнні называюць раней, чым 8. Другое сцвярджэнне носіць прыватны характар. Яго называюць прыватнай пасылкай: а(а).
- •Выконваецца па плану
- •1. Множанне і дзяленне круглых лікаў:
- •Складанне з двумя пераходамі праз разрад.
- •9.Адніманне лікаў з прапушчанымі разрадамі
- •11. Алгарытмы аднімання аналагічныя алгарытмам аднімання трохзначных лікаў:
- •3. Дзяленне, калі дзялімае прадстаўляецца не сумай разрадных, а сумай зручных складаемых:
- •4. Састаўленне алгарытма пісьмовага дзялення трохзначнага ліку на адназначны лік.
- •5.Дзяленне трохзначнага ліку на адназначны, калі ў дзелі атрымоўваецца двухзначны лік:
- •6. Дзяленне, калі ў дзелі паяўляецца нуль.
- •1. Паўтарэнне нумарацыі трох- і чатырохзначных лікаў.
- •2. Выкарыстанне лічыльнікаў: паказ, дзе, на якім дроціку адкладваюцца адз. Тыс., дзес. Тыс., сотні тысяч.
- •3. Прымяненне табліцы разрадаў і класаў:
- •5. Складанне і адніманне найменных лікаў праводзіцца пасля папярэдняга прадстаўлення іх ў аднолькавых най-меннях і выконвацца так, як і над абстрактнымі лікамі:
- •2. Паўтарэнне прыёму пісьмовага множання 189 . Лік, алгарытму множання:1)пішу...,2)множу адзінкі... Х 4
- •3. Множанне ліку з нулямі ў канцы запісу: 189 000
- •5. Пісьмовае множанне найменных лікаў:
- •32832!456 1-Ае няпоўнае дзялімае 3283сот. У дзелі 2 лічбы.
- •Тэарэтычная аснова арыфметычных дзеянняў
- •5 І 4 лікавыя дадзеныя задачы
- •3. Да састаўленых задач падабраць патрэбныя выразы:
- •Из ряда данных составной задачи выбирают наиболее подходящую пару данных, находящихся между собой в той или иной зависимости
- •4 .Таблица
- •5.Схема
- •1.Запись решения рассмотренной задачи по действиям
- •8. Геометрический способ решения задачи Используя чертёж, найдём сумму отрезков:
- •1.Вывучэнне лікавых і літарных выразаў, роўнасцей і няроўнасцей
- •2.Навучанне рашэнню задач састаўленнем выразу і ўраўнення
- •3.Навучанне рашэнню ўраўўненняў і няроўнасцей з пераменннай
- •100•6– Колькасць сшыткаў, купленых у лінейку;
- •50•3 - Колькасць сшыткаў, купленых ў клетку і інш.
- •6 Па 100 сш Хсш Далей па чарцяжу
- •100•6 – Колькасць сшыткаў у лінейку
- •4. Рашэнне ўраўненняў і няроўнасцей з пераменнай спосабам падбору без вызначэння вобласці выбару.
- •6. Рашэнне больш складаных ураўненняў на аснове п.5
- •1. Актуалізацыя патрэбных ведаў.
- •2. Стварэнне праблемнай сітуацыі
- •3. Пастаноўка вучэбнай задачы.
- •6. Выкананне арыфметычных дзеянняў над найменнымі лікамі па тых жа алгарытмах і правілах, што і пры выкананні гэтых дзеянняў на абстрактных ліках.
- •Навучанне рашэнню задач праводзіцца ў 3-ы перыяды.
- •Падрыхтоўчы перыяд - знаёмства з залежнасцю паміж велічынямі: цаной - колькасцю - коштам; скорасцю-часам-адлегласцю; даўжынёй–шырынёй-плошчай прама-вугольніка і інш.
- •Асноўны перыяд - знаходжанне спосабаў рашэння задач з прапарцыянальнымі велічынямі.
- •Заключны перыяд - замацаванне спосабаў рашэння.
- •Задачы на прапарцыянальнае дзяленне
- •Задачы на знаходжанне ліку па двух рознасцях
- •6 У лінейку па той жа цане. Адноль 2 сш. ? р.
- •Задачы на рух
- •3Км/г, а длегласці - 16км) і чарцяжу
- •В личностно-логической модели а.А.Столяра одной из основных задач обучения математике ставится развитие логического мышления. Для этого в начальном обучении используются:
- •Логические методы: анализ и синтез, абстрагирование и конкретизация, сравнение и аналогия, эмпирическое обобщение, рассуждения по индукции и дедукции;
- •Логическиеметоды: анализ и синтез, абстрагиро-вание и конкретизация, сравнение и аналогия, эмпирическое обобщение, рассуждения по индукции и дедукции;
1.Вывучэнне лікавых і літарных выразаў, роўнасцей і няроўнасцей
2.Навучанне рашэнню задач састаўленнем выразу і ўраўнення
3.Навучанне рашэнню ўраўўненняў і няроўнасцей з пераменннай
Лікавыя выразы састаўляюца з лічбаў, знакаў няроўнасцей, роўнасцей, дужак. Атрыманы вынік (лікавае значэнне выразу) прадстаўляе таксама выраз і залежыць ад расстаноўкі дужак: (7–4) –3=0 і 7 -(4 –3)=6; (80: 8): 2=5 і 80:(8 :2)=20.
Спачатку рашаюцца прыклады толькі на складанне, адніманне, затым толькі на множанне і дзяленне. Нарэшце, вывучаецца парадак выканання дзеянняў у выразах, якія змяшчаюць не толькі складанне і адніманне, але і множанне і дзяленне спачатку ў выразах без дужак, а затым і з дужкамі.
На прыкладах паказваецца, што ў выразах без дужак выконваецца спачатку множанне і дзяленне, а затым складанне і адніманне. Калі стаяць дужкі, то гэтыя дзеянні спачатку выконваюцца ў іх. Для замацавання правіл можна прапанаваць аднолькавыя выразы з рознымі адказамі, дзе дужкі не пастаўлены: 200-100:20+5=196; 200-100:20+5=190; 200-100:20:5=10; 200--100:20+5=4.
Калі злучыць два лікавыя выразы знакам =, то атрымаем лікавую роўнасць,знакамі > або < -- лікавую няроўнасць. Лікавыя роўнасці і няроўнасці бываюць сапраўднымі (2+3=6-1) або несапраўднымі (8:2>3•2), што ўстанаўліваецца параўнаннем лікавых значэнняў іх правай і левай частак:5 = 5 (с.); 4 < 6 (н.) для прыведзеных выпадкаў адпаведна.
У школе лікі спачатку параўноўваюцца на аснове біекцыі іх прадстаўляючых мностваў або лікавага праменю, затым на аснове іх разраднага саставу або раздраблення найменных лікаў: 6 050<6 500, бо 50 менш 500; 5 т 6 ц > 560 кг, бо 5600 кг > 560 кг. Затым лікавыя выразы параўноўваюцца не толькі вылічэннем, але і на аснове тэарэтычных звестак, прыёмаў вылічэнняў: 123•25+877•25 і 25•1000, (123+877) •25=25 000.
Літарныя выразы , роўнасці і няроўнасці ўводзяцца па
тых жа правілах, што і лікавыя. Розніца толькі ў тым, што знаходзяцца іх лікавыя значэнні пасля падстаноўкі замест літар іх лікавых значэнняў, параўноўваюцца выразы часцей на аснове вылічэнняў. . Першыя літары, якія абазначаюць невядомае, уводзяцца для запісу прасцейшых ўраўненняў і няроўнасцей тыпу: Х+6=10, Х-1<4.
Літара як пераменная, якая можа прымаць мноства значэнняў, прымяняецца пры запаўненні табліц тыпу:
П
амяншаемае
а 600 400 ... У далейшым назвы
Аднімаемае в ... 317 617 кампанентаў
знімаюц-
Рознасць а-в=с 235 ... 383 ца з табліцы .
Пазней выконваюцца розныя практыкаванні віду:
1. Знайсці лікавыя значэнні выразу (а+в):2 пры а=24 і в=48; а=56 і в=34; а=70 і в=30. Зрабіць вывад.
2. Параўнаць выразы а: (в: с) і а:в:с пры а=36, в=6, с=3.
Літары лацінскага
алфавіту прымянюцца таксама для
абазначэння геаметрычных фігур : А
В і С.
Часта прымяняюцца літары для запісу ўласці-васцей арыфметычных дзеянняў: а+в=в+а; а•в=в•а – перамяшчальных складання і множання; а:(в•с)=а:в:с; а+(в+с)=(а+в)+с; а•(в•с)=(а•в)•с – спалучальных скла-дання і аднімання, а таксама размеркавальных множан-ня адносна складання і аднімання: (а+в)•с=а•с+в•с; (а-в)•с=а•с–в•с; дзялення здабытку на лік і ліку на здабытак:(а•в):с=а:с•в=а:с•в;а:(в•с)=а:в:с=а:с:в; прыбаў-ленне сумы лікаў да сумы і аднімання сумы лікаў ад сумы: (а+в+с)+(d+e+f) і (а+в+с)-(m+n+р); дзялення сумы і рознасці на лік: (а+в+с+d+e):m і (а-в):с;дзялення ліку на дзель: а:L(в:с)=а:в•с , дзелі на лікL(а:в):с=(а:с):в і інш.
Падрыхтоўчай работай да рашэння задач састаўленнем выразу або ўраўнення з’яўляецца састаўленне магчымых выразаў па ўмове задачы без пытання, напрыклад: Купілі 6 пакетаў сшыткаў у лінейку па 100 у кожным і 3 пакеты сшыткаў у клетку па 50 у кожным. Па дадзенай умове скласці простыя выразы з тлумачэннямі да іх. Вучні прапануюць:
6+3 – колькасць усіх купленых пакетаў сшыткаў;