
- •Методыка выкладання матэматыкі і практыкум па рашэнню задач
- •Дадатковая
- •Рэпрадуктыўныя, калі вучань выконвае заданні па ўзору (пісьмовае складанне трохзначных лікаў);
- •Варыятыўныя, калі вучань выбірае правільны адказ з некалькіх прапанаваных адказаў;
- •Творчыя, калі патрабуецца скласці новую задачу, рашыць праблемную задачу, прымяніць свае веды ў новых нестандартных ўмовах.
- •1) Калі лік а пры лічэнні называюць раней ліку в, то а менш в для любых натуральных лікаў. Гэта агульнае сцвярджэнне, якое называюць агульнай пасылкай. Абазначаюць: а(х) в(х).
- •2) 7 Пры лічэнні называюць раней, чым 8. Другое сцвярджэнне носіць прыватны характар. Яго называюць прыватнай пасылкай: а(а).
- •1. Праблемнае навучанне.
- •2..Праграмаванае навучанне
- •3, Пошукова-даследчая тэхналогія навучання..
- •1)Праблемнае ізлажэнне, пры якім настаўнік сам стварае праблемную сітуацыю, сам вылучае з яе праблему і ставіць праблемную задачу, сам яе рашае, сам правярае, ацэньвае ход і вынік рашэння;
- •2)Раблемна-пошукавы, або эўрыстычны, калі да пастаноўкі і рашэння, праверкі і ацэнкі вынікаў рашэння праблемнай задачы прыцягваюцца вучні;
- •3)Даследчы, калі пасля стварэння праблемнай сітуацыі настаўнікам пошукавую дзейнасць па пастаноўцы задачы, яе рашэнню, праверцы, ацэнцы хода і вынікаў рашэння вучні выконваюць самастойна.
- •1) Лінейнай, калі пасля вывучэння кожнай порцыі матэрыялу вучнем фармулюецца і правяраецца адказ на пытанне і пасля гэтага вывучаецца наступная порцыя;
- •2) Разгалінаванай, калі пасля вывучэння порцыі матэрыялу выбіраецца вучнем адзін з адказаў на пытанне, а пры няправільным выбары адказу тлумачыцца памылка і перавучваецца матэрыял;
- •3) Адаптыўнай, калі спалучаюцца абодва віды праграм у адпаведнасці з індывідуальнамі асаблівасцямі вучня. Праграмаванае навучанне можа ажыццяўляцца праз вучэбныя дапаможнікі або з прымяненнем эвм.
- •1. Прочитайте задачу1-ый уч. ----- кг
- •1Нструктаж па выкананню пройдзенаму матэрыялу
- •2) Визуальные, 3) аудиальные, 4) аудиавизуальные
- •1 Эпидиаскопы Радио Кодоскопы 2 3 Проигрыв.
- •П раводзіцца па-за ўрокаў з вучнямі не толькі аднаго, але і некалькіх класаў на добраахвотных асновах, якія вызначаюцца ўмовамі:
- •Прыёмы вучэбнай работы характэрызуюць спосабы здзяйснення вучэбнай дзейнасці. Яны падпарадкаваны вучэбным задачам, якія патрабуюць прымянення таго або іншага прыёма, ужо засвоенага вучнямі або новага.
- •1. Параўнанне канкрэтных велічынь ( даўжыні, плошчы, аб’ёму) спачатку “на вока”, а затым накладаннем, прыкладаннем, пераліваннем і г. Д.
- •2. Мадэляванне велічынь адрэзкамі. Параўненне велічынь з дапамогай адрэзкаў. Напрыклад:
- •5.Увядзенне мерак па вымярэнню велічынь. Мадэляванне велічынь адрэзкамі. Вымярэнне адрэзкаў меркай і паяўленне паслядоўнасці цэлых неадмоўных лікаў.
- •6. Пераход да меншай меркі і ўвядзенне дзеяння множання.
- •8. З дапамогай мадэлявання і пераходу да мерак у 10 разоў большых (меншых) за дадзеную ўводзяцца таксама дзесятковыя дробы, працэнты і дзеянні над імі.
- •Логическиеметоды: анализ и синтез, абстрагиро-вание и конкретизация, сравнение и аналогия, эмпирическое обобщение, рассуждения по индукции и дедукции;
- •1.Паўтарэнне прыёмаў складання і аднімання на аснове нумарацыі двухзначных лікаў.
- •3.Складанне, калі лік дапаўняецца да 10 і на аснове складу ліку вызначаецца і дадаецца да 10 лік, які застаўся.
- •4.Адніманне ад двухзначнага адназначнага ліку, калі памяншаемае прадстаўляецца ў выглядзе сумы двух складаемых, адно з якіх роўна аднімаемаму:
- •1) Калі лік а пры лічэнні называюць раней ліку в, то
- •2) 7 Пры лічэнні называюць раней, чым 8. Другое сцвярджэнне носіць прыватны характар. Яго называюць прыватнай пасылкай: а(а).
- •Выконваецца па плану
- •1. Множанне і дзяленне круглых лікаў:
- •Складанне з двумя пераходамі праз разрад.
- •9.Адніманне лікаў з прапушчанымі разрадамі
- •11. Алгарытмы аднімання аналагічныя алгарытмам аднімання трохзначных лікаў:
- •3. Дзяленне, калі дзялімае прадстаўляецца не сумай разрадных, а сумай зручных складаемых:
- •4. Састаўленне алгарытма пісьмовага дзялення трохзначнага ліку на адназначны лік.
- •5.Дзяленне трохзначнага ліку на адназначны, калі ў дзелі атрымоўваецца двухзначны лік:
- •6. Дзяленне, калі ў дзелі паяўляецца нуль.
- •1. Паўтарэнне нумарацыі трох- і чатырохзначных лікаў.
- •2. Выкарыстанне лічыльнікаў: паказ, дзе, на якім дроціку адкладваюцца адз. Тыс., дзес. Тыс., сотні тысяч.
- •3. Прымяненне табліцы разрадаў і класаў:
- •5. Складанне і адніманне найменных лікаў праводзіцца пасля папярэдняга прадстаўлення іх ў аднолькавых най-меннях і выконвацца так, як і над абстрактнымі лікамі:
- •2. Паўтарэнне прыёму пісьмовага множання 189 . Лік, алгарытму множання:1)пішу...,2)множу адзінкі... Х 4
- •3. Множанне ліку з нулямі ў канцы запісу: 189 000
- •5. Пісьмовае множанне найменных лікаў:
- •32832!456 1-Ае няпоўнае дзялімае 3283сот. У дзелі 2 лічбы.
- •Тэарэтычная аснова арыфметычных дзеянняў
- •5 І 4 лікавыя дадзеныя задачы
- •3. Да састаўленых задач падабраць патрэбныя выразы:
- •Из ряда данных составной задачи выбирают наиболее подходящую пару данных, находящихся между собой в той или иной зависимости
- •4 .Таблица
- •5.Схема
- •1.Запись решения рассмотренной задачи по действиям
- •8. Геометрический способ решения задачи Используя чертёж, найдём сумму отрезков:
- •1.Вывучэнне лікавых і літарных выразаў, роўнасцей і няроўнасцей
- •2.Навучанне рашэнню задач састаўленнем выразу і ўраўнення
- •3.Навучанне рашэнню ўраўўненняў і няроўнасцей з пераменннай
- •100•6– Колькасць сшыткаў, купленых у лінейку;
- •50•3 - Колькасць сшыткаў, купленых ў клетку і інш.
- •6 Па 100 сш Хсш Далей па чарцяжу
- •100•6 – Колькасць сшыткаў у лінейку
- •4. Рашэнне ўраўненняў і няроўнасцей з пераменнай спосабам падбору без вызначэння вобласці выбару.
- •6. Рашэнне больш складаных ураўненняў на аснове п.5
- •1. Актуалізацыя патрэбных ведаў.
- •2. Стварэнне праблемнай сітуацыі
- •3. Пастаноўка вучэбнай задачы.
- •6. Выкананне арыфметычных дзеянняў над найменнымі лікамі па тых жа алгарытмах і правілах, што і пры выкананні гэтых дзеянняў на абстрактных ліках.
- •Навучанне рашэнню задач праводзіцца ў 3-ы перыяды.
- •Падрыхтоўчы перыяд - знаёмства з залежнасцю паміж велічынямі: цаной - колькасцю - коштам; скорасцю-часам-адлегласцю; даўжынёй–шырынёй-плошчай прама-вугольніка і інш.
- •Асноўны перыяд - знаходжанне спосабаў рашэння задач з прапарцыянальнымі велічынямі.
- •Заключны перыяд - замацаванне спосабаў рашэння.
- •Задачы на прапарцыянальнае дзяленне
- •Задачы на знаходжанне ліку па двух рознасцях
- •6 У лінейку па той жа цане. Адноль 2 сш. ? р.
- •Задачы на рух
- •3Км/г, а длегласці - 16км) і чарцяжу
- •В личностно-логической модели а.А.Столяра одной из основных задач обучения математике ставится развитие логического мышления. Для этого в начальном обучении используются:
- •Логические методы: анализ и синтез, абстрагирование и конкретизация, сравнение и аналогия, эмпирическое обобщение, рассуждения по индукции и дедукции;
- •Логическиеметоды: анализ и синтез, абстрагиро-вание и конкретизация, сравнение и аналогия, эмпирическое обобщение, рассуждения по индукции и дедукции;
32832!456 1-Ае няпоўнае дзялімае 3283сот. У дзелі 2 лічбы.
3192 72 Акругляем 456≈500=5•100; 3283:100:5 ≈6
912 Правяраем 456•6=2736;3283-2736=547>456 (мала)
912 Бяром па 7. 456•7=3192;3283-3192=91<456(прав.)
0 2-ое няп. дзялімае 912:500≈1(мала). Бяром па 2.
456•2=9 2 912-912=0. Праверка: 456•72=32832.
Задачы гэтых відаў зручна рашаць па іх мадэлях на адрэзках. Па кожнай канкрэтнай задачы на адрэзку-мадэлі паказваецца:каб знайсці дроб ад ліку, патрэбна лік падзяліць на назоўнік, а потым дзель памножыць на лічнік; каб знайсці лік па яго дробу, патрэбна лік падзяліць на лічнік, а потым дзель памножыць на назоўнік.
Задача. Агарод прамавугольнай формы мае шырыню 24 м, што складае 3/4 яго даўжыні. 2/3 усёй плошчы агарода засадзілі бульбай. Колькі квадратных метраў плошчы засадзілі бульбай?
Знаходзім лік, 3/4 частка якога складае 24 м.
24 м
3/4
4/4 - ? м
1/4 частка ад ліку 24 м складае 24:3=8(м).Увесь лік складае 4/4 часткі (у 4 разы больш,чым 8м): 8·4=32(м). Таму даўжыня агарода 24:3·4=32(м), а плошча агарода прамавугольнай формы будзе 32·24=768 (м2).
Далей знаходзім 2/3 ад ліку 768 (м2).
3/3 скл. 768 м2 1/3 ад ліку768м2: 768:3=256(м2)
2/3 складзе
256·2=512(м2).
Плошча,
засаджаная бульбай,
Заданне, якое мае ўмову і патрабаванне, што патрэбна зрабіць, называюць задачай. Прыклады (Пр.):1) Вылічыць 9-2. 2) Рашыць няроўнасць 2+Х<9. 3) Пабудаваць квадрат, перыметр якога роўны 16 см.
Найбольш характэрны для матэматыкі тэкставыя або сюжэтныя задачы: ”На адну талерку паклалі 20 вішань, што ў 2 разы больш,чым на другую (умова задачы). Колькі ўсяго вішань паклалі на талеркі ? (пытанне задачы)”.
З тэкста задачы звычайна выдзяляюць:
ПРАДМЕТНУЮ ВОБЛАСЦЬ: дзве талеркі з вішнямі. ВЕЛІЧЫНІ-колькасць.
ЗНАЧЭННН1 ВЕЛІЧЫНІ:вядо-мыя—20вішань, невядомыя - 10в., шукаемае-30в. АДНОСІНЫ: у 2 разы больш.ЗАЛЕЖНАСЦІ: усяго.
РАШЭННЕ: (20:2)+20=30 (в.). АДКАЗ: паклалі 30 вішань.
Патрэбна адрозніваць паняцце “рашэнне задачы” як:
1) вынік (адказ-30в.); 2) спосаб рашэння задачы (а:2+а); 2) працэс пошуку спосабу; 3) план знаходжання адказу.
Рашэнне задачы можна зрабіць рознымі спосабамі: 1.ПРАКТЫЧНЫМ–з дапамогай канкрэтных прадметаў.
2.АРЫФМЕТЫЧНЫМ - рашэннем задачы па дзеяннях: 20:2=10(в.);10+20=30(в.) або састаўленнем выразу: 20:2+10.
3.АЛГЕБРАІЧНЫМ- з дапамогай ураўнення: х–20:2=20. 4. ГЕАМЕТРЫЧНЫМ -з дапамогай чарцяжа.
У пачатковых класах рашаюць задачы: 1) у прамой і ва ўскоснай форме; 2) з поўнымі, недастаючымі або з лішнімі дадзенымі ; 3) прамыя і адваротныя ім. Праверка рашэння задачы праводзіцца: 1) прыкідкай выніку; 2) рашэннем задачы другім спосабам; 3) рашэннем адваротнай задачы; 4) адпаведнасцю адказу ўмове задачы. Задачы бываюць: простыя на адно дзеянне, на два і больш дзеянняў - састаўныя з прыведзенымі або непрыведзенымі дадзенымі.
Найбольш вядомая класіфікацыя простых задач:
1-ая група (5 відаў) - на знаходжанне: 1) сумы; 2) астатка; 3) сумы аднолькавых складаемых (здабытку); 4) дзяленне на роўныя часткі Пр.: Паклалі 8 груш пароўну на дзве талеркі. Колькі груш на кожнай талерцы? ; 5) дзяленне па зместу Пр.: Расклалі на талеркі 6 груш па 2 на кожную. Колькі талерак спатрэбілася?
2-ая група (8 відаў) - на сувязь паміж кампанентамі і вынікамі арыфметычных дзеянняў? Пр.: а) Купілі 3 сшыткі ў клетку і 5 – у лінейку. Колькі ўсяго купілі сшыткаў? б) Усяго купілі 8 сшыткаў у клетку і лінейку, з іх 3 сшыткі ў клетку. Колькі сшыткаў купілі ў лінейку? і інш..
3 - яя група (8 відаў) – на павялічэнне (памяншэнне) ліку на некалькі адзінак і ў некалькі разоў ва ўскоснай і прамой форме. Пр.: а) Было 9 алоўкаў, што ў 3 разы больш, чым маркераў. Колькі было маркераў? (УФ) б) Было 9 алоўкаў, а маркераў- у 3 разы менш. Колькі было маркераў? (ПФ).
4-я група (4 віды) – на параўнанне: рознаснае ( на колькі больш-менш) і на кратнае ( у колькі разоў больш-менш).
5-ая група (2 віды)- на знаходжанне долі ад ліку і ліку па яго долі Пр.: а) Кілаграм цукерак каштуе 6 тысяч рублёў. Колькі каштуе 1/3 кг цукерак? б) 1/3 кг цукерак каштуе 2 тысячы рублёў. Колькі каштуе 1 кг цукерак? або: Якая цана цукерак?
У пачатковым курсе матэматыкі задачы рашаюцца для
засваення тэарэтычага матэрылу (плошча квадрата);
засваення прыёмаў арыфметычных вылічэнняў;
развіцця лагічнага мыслення (аналіз, аналогія і інш.);
4) маральнага і эстэтычнага выхавання вучняў;
кантролю ведаў, уменняў і навыкаў (тэсты і інш.);
дыягностыкі разумовага развіцця вучняў.