
- •7.Технологическая схема получения простого суперфосфата. Устройство и принцип работы бг.
- •8. Выбор и обоснование оптимального технологического режима получения простого суперфосфата.
- •10.Перспективы и направления развития производства фосфорных удобрений.
- •24. Технологическая схема производства аммофоса. Аппаратурное оформление.
- •25. Аммиачная селитра. Физико-химические свойства селитры и стадии её производтсва.
- •31.Стадии получения карбамида. Основные способы синтеза карбамида и их характеристика.
- •34.Технологическая схема переработки растворов карбамида в готовый продукт.
- •35.Технологическая схема переработки растворов карбамида с полным жидкостным рециклом
- •36. Технологическая схема синтеза карбамида по стрипинг-процессу
- •17. Типы, устройство и принцип работы вакуум-фильтров производства эфк.
- •18. Типы, устройство и принцип работы экстракторов производства эфк
- •19. Физико-химические основы и технологическая схема стадии упарки производства эфк
- •26. Технологическая схема производства аммиачной селитры из аммиаксодержащих газов.
- •27. Тех схема пр-ва аммиачной селитры в аппарате ас-72.
- •41. Технологическая схема получения kCl флотационным методом.
- •42. Физико-химич основы стадии выщелачивания производства kCl.
- •43. Физико-химич основы стадии упарки в производстве kCl галургич методом. Аппаратурно оформление стадии упарки
- •44. Принципиальная блок-схема получения kCl галургич методом.
- •45. Устройство и принцип работы аппарата итн-72
- •47 Сырьё для получения серной к-ты. Получение из колчедана
- •48. Получение серн. К-ты из серы
- •49. Способы производства нитрата калия. Технологическая схема.
- •50. Способы производства фосфата калия. Технологическая схема.
- •51. Производство соды, физико-химические основы. Основные технологические стадии и источники сырья.
45. Устройство и принцип работы аппарата итн-72
Аппарат нейтрализации ИТН-72 представляет собой вертикальный цилиндрический аппарат, состоящий из реакционной и сепарационной зон диаметром соответственно 1,6 и 3,8 м и высотой 10,1 м. В реакционной зоне имеется стакан 1 диаметром 1,2 м и высотой 4,3 м, в нижней части которого расположены отверстия для циркуляции раствора. Несколько выше отверстий внутри стакана размещен барботер 2, подающий газообразный аммиак, над ним — барботер азотной кислоты 3. Реакционная парожидкостная смесь выходит из верхней части реакционного стакана; часть раствора выходит из аппарата ИТН и поступает в донейтрализатор, а остальная часть (циркуляционная) — вновь идет вниз. Выделившийся из парожидкостной смеси соковый пар отмывается на колпачковых тарелках 7 от брызг раствора аммиачной селитры и паров азотной кислоты 20%-ным раствором селитры, а затем конденсатом сокового пара. Аппарат изготовлен из кислотостойкой стали, а барботеры аммиака и азотной кислоты — из титана.
46. Устройство и принцип работы барабанного гранулятора и барабанной сушилки.Барабанная сушилка выполняется в виде сварного цилиндра. К его наружной поверхности прикреплены бандажные опоры, а также кольца жёсткости и приводной зубчатый венец. Наклон оси барабана может составлять до 3-6 градусов к горизонту. Данные сушилки относятся к атмосферным сушилкам непрерывного действия. В них сушат сыпучие продукты. В качестве сушильного агента используются топочные газы или нагретый воздух. Внутри барабана располагаются насадки. Их конструкция определяется свойствами высушиваемого продукта. Со стороны загрузочной камеры расположена многозапорная винтовая насадка. В зависимости от диаметра барабана она может иметь от 6 до 16 спиральных лопастей. Для сушки продуктов обладающих большой адгезией к поверхности в барабане закрепляют цепи, которые дробят комки, а также очищаю стенки барабана. Вместо цепей могут использоваться ударные приспособления. Их крепят с внешней стороны барабана. В зависимости от свойств продукта могут применяться различные схемы барабанных сушилок (наприм. с исп-ем секторных насадок, подъёмно-лопастных устройств и т.д.) Для изготовления, барабанов, загрузочных и разгрузочных камер в основном применяют углеродистые стали, иногда жаростойких стали. Принципиальная схема барабанной сушилки состоит из следующих элементов: 1 - барабан; 2 – питатель; 3 – сушильный барабан; 4 – топка; 5 – смесительная камера; 6, 7, 11 – вентиляторы; 8 – промежуточный бункер; 9 – транспортёр; 10 – циклон; 12 – зубчатая передача.Принцип действия барабанной сушилки. Сырой продукт из бункера 1 через питатель 2 направляется во вращающийся барабан 3 сушильной установки. Одновременно с продуктом в установку подаётся сушильный агент. Он состоит из топочных газов от топки 4 и воздуха, которые смешиваются в смесительной камере 5. В смесительную камеру и топку воздух нагнетается вентиляторами 6 и 7. Сухой продукт выходит с другого конца барабана 8 и далее попадает на транспортирующее устройство 9. Перед выбросом отработанного сушильного агента в атмосферу его очищают в циклоне 10. В некоторых случаях очистку дополняют мокрым пылеулавливанием. Вентилятор 11 осуществляет подачу сушильного агента через сушильную камеру установки. Для того чтобы предотвратить утечку сушильного агента через неплотные соединения в конструкции в сушилке создаётся небольшое разряжение. Вращение барабана осуществляется электродвигателем с помощью зубчатой передачи 12.
Барабанный гранулятор. Описание. Грануляторы, в которых происходит окатывание материала, по типу движения поверхности делятся на ротационные, ленточные и вибрационные. Ротационные аппараты бывают барабанные, тарельчатые (дисковые), центробежные, лопастные. Барабанный гранулятор (рис. VII-1) представляет собой горизонтальный или наклоненный под углом 1—3° в сторону выгрузки цилиндр с закрепленными на нем бандажами и венцовой шестерней, через которую передается крутящий момент от электродвигателя. Принцип действия барабанного гранулятора основан на вращении барабана, установленного горизонтально или под углом 1-3° (частота вращения 5-20 мин -1) внутри к-рого перемещается слой материала. Степень заполнения им аппаратов может изменяться от 10 до 15%. Окатывание в барабанном грануляторе происходит на боковой цилиндрич. пов-сти. Для интенсификации окатывания применяют скоростные и вибрац. грануляторы, в к-рых получают более плотные и однородные по размерам гранулы. БГ состоит: 1 - полый вращающийся барабан; 2 - бандажи; 3 - электродвигатель; 4 - венцовая шестерня; 5 - опорные ролики; 6 - нож для очистки стенок; 7 - форсунки. С торцов барабан снабжен загрузочной и разгрузочной камерами, герметизирующими рабочий объем гранулятора. Через загрузочную течку вводится исходная шихта или сухой порошок. Сушильный агрегат состоит из топки, сушильной камеры (барабана) и вентиляционного устройства. Осадок поступает в барабан через загрузочную камеру и удаляется из него через выгрузочную камеру. Сушильный барабан устанавливают с углом наклона к горизонту 3—4°. Частота вращения барабаня 1,5—9 мин-1. Наклон барабана и его вращение обеспечивают движение материала под действием силы тяжести от загрузочной камеры к выгрузочной. Для измельчения осадка в начале и конце барабана подвешиваются корабельные цепи. В средней части сушилки устанавливаются лопастные, секторные или винтовые насадки, обеспечивающие перемешивание осадка и равномерное распределение его по сечению барабана. Цепи и насадки интенсифицируют процесс сушки, обеспечивая большую площадь поверхности контакта между осадком и сушильным агентом. Осадок сушится проходящими через сушилку топочными газами, получаемыми в результате сжигания газа в топке. При сжигании газа в топку подается избыточный объем воздуха. Движение топочных газов создается дутьевым и отсасывающим вентиляторами. Принцип гранулирования основан на интенсивном перемешивании и разности скоростей материала и лопастей.