Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
(студ.)_Лекция № 3_ЭКОС.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
414.72 Кб
Скачать

2. Нормирование качества воды

Качество воды оценивается по многим параметрам, величины которых зависят от ее назначения. Они устанавливаются требованиями ГОСТов, постановлениями правительства и постоянно корректируются. Основные требования к воде можно объединить в следующие группы:

1. К основным физико-химическим показателям, определяющим органолептические свойства воды, относят привкус, запах, мутность, цветность, а также ПДК компонентов, которые ухудшают органолептические свойства воды. Привкус, запах, цветность определяются по специальным шкалам. Для питьевой воды эти показатели «на глаз» не должны ощущаться. Мутность для той же воды — не более 1,5 мг/л (для сравнения: мутность речной воды в р. Сыр-Дарья достигает 1500 мг/л, в р. Дон — до 50 мг/л). Перечень веществ, влияющих на органолептические свойства воды, постоянно расширяется. В настоящее время к нему относят железо, марганец, медь, сульфаты, хлориды, фенолы, хлор и др. Так, для питьевой воды сухой остаток — не более 1000 мг/ л, хлориды — 350 мг/л, железо — 0,3 мг/л, цинк — 5 мг/л, общая жесткость — 7 мг-экв./л и др.

2. Органолептические свойства воды во многом связаны с ее кислотностью или щелочностью. Степень кислотности (или щелочности) должна быть не слишком велика, т. е. реакция воды — близка к нейтральной. Это оценивается величиной водородного показателя рН. Для питьевой воды он должен лежать в пределах от 6 до 9 (по стандарту 1973 г. требования были даже жестче - от 6,5 до 8,5).

Химическое разъяснение. Водородный показатель характеризует степень диссоциации воды на ионы Н+ и ОН-, соотношение между которыми определяет кислотность, щелочность или нейтральность воды (слабого электролита). Концентрация ионов Н+ определяет кислотность, а ОН- — щелочность среды. Чаще всего концентрация оценивается в грамм-ионах на 1 л воды. При концентрации Н+ в 107 г-ионов/л раствор нейтральный (т. е. содержит столько же грамм-ионов ОН-). Если же ионов Н+ больше чем 10-7 (например 10-6 или 10-5), то среда кислая. При меньших концентрациях Н+ среда щелочная. Водородный показатель рН и есть показатель степени величины концентрации Н+, взятый со знаком плюс. Более строгое определение: это отрицательный десятичный логарифм концентрации водородных ионов, т. е. рН = -lgН+. Для ориентации: рН лимонного сока 2-3, уксуса столового 2,4—3,3, кислого виноградного вина до 3,5; очень кислых атмосферных осадков 2—2,1, нормальных 5,6.

3. Безопасность воды в эпидемическом отношении определяется косвенными показателями: количеством микробов в 1 мл воды (общее микробное число для питьевой воды — до 100) и содержанием бактерий группы кишечной палочки (палочек Коли) в 1 л. Последний параметр называется Коли-индекс (для питьевой воды в водопроводе — до 3; в водоемах зон рекреации - до 10000). Величина, обратная Коли-индексу, называется Коли-титр (для питья — не менее 300 мл на одну палочку).

4. Показатели токсичности воды приводятся в виде ПДК тех веществ, которые могут встретиться в исходной воде или добавляться в нее искусственно. Это достаточно широкий перечень как неорганических, так и органических компонентов, к которым относятся алюминий, барий, бериллий, ртуть, свинец, хлороформ, дихлорэтан, бензапирен и др. Для питьевой воды, например, содержание в мг/л должно быть не более: бериллия — 0,0002; свинца — 0,05; ртути — 0,001 и т. д. Причем при обнаружении в воде нескольких веществ однонаправленного действия их концентрация С проверяется по ПДК1 и суммируется так же, как и для воздуха при определении ПДВ;

5. Паразитологические показатели оценивают количеством патогенных микроорганизмов (от дизентерийных амеб до холерных вибрионов, вирусов лептоспироза и др.). Они не должны обнаруживаться в 25 л питьевой воды.

6. Органическое загрязнение воды определяют косвенным путем — по количеству кислорода, необходимого для окисления органических примесей в одном литре воды. Чем больше требуется кислорода, тем грязнее вода. Применяются два показателя: биологическая потребность в кислороде за определенное время БПК (БПК5 — за 5 суток, БПК20 — за 20 суток) и химическая потребность в кислородеХПК. Причем ХПК — более полная оценка загрязнения, при определении которой вовлекаются в реакцию даже трудноокисляемые органические вещества. Величины БПК и ХПК особенно важно учитывать для сточных вод. Если БПК/ХПК меньше 0,5, то сточные воды считаются перенасыщенными трудноокисляемыми (а значит и трудноудаляемыми) соединениями. По международным стандартам 1982 г., при ХПК 100 мг/ л вода считается чрезвычайно загрязненной.

Качество воды, во многом зависящее от количества растворенного в ней кислорода, можно оценить двояко: по насыщению воды кислородом в процентах от максимально возможного при данной температуре и по содержанию кислорода в одном литре. По международным стандартам 1982 г. вода высокого качества должна иметь эти величины не менее 60% и 4 мг/л соответственно. Во многих стандартах последних лет этот параметр не оговаривался, так как при норме параметров предыдущих пяти групп кислородные показатели выполняются практически всегда.

Ввиду многообразия вредных и токсичных веществ в водоемах их объединяют в группы и каждую нормируют по лимитирующему показателю вредности - ЛПВ. Для водоемов выделяют три вида ЛПВ: санитарно-токсикологический, общесанитарный и органолептический. Для рыбохозяйственных водоемов используют еще два вида ЛПВ: токсикологический и рыбохозяйственный. Причем здесь многие параметры, которые относятся к общесанитарным, являются токсикологическими (цинк,) или рыбохозяйственными (фенолы,), так как значительно влияют на жизнь в водоемах.

Основные причины загрязнения воды и принципы борьбы с ними

Наибольшее влияние на состояние рек оказывает сельскохозяйственное производство. Применение пестицидов (от «пест» — вред, «цидо» — убивать) во многих случаях буквально уничтожает биоценоз реки, особенно при работах на землях, непосредственно примыкающих к руслу.

Загрязнение рек промышленными и бытовыми стоками по массе стоит на втором месте, но, зачастую, по вредности является определяющим. Так, сбросы предприятий электронной и радиопромышленности, использующие хлорорганические растворители, отходы целлюлозно-бумажных комбинатов даже при сравнительно небольшой величине стоков убивают диоксинами все живое в ближайших водоемах.

Особенно следует выделить нефтяное загрязнение водоемов. Мало того, что продукты разложения нефти чрезвычайно токсичны, но еще и нефтяная пленка, изолирующая воду от воздуха, приводит к гибели живых организмов в воде. В Мировой океан ежегодно поступает до 3—10 млн. т нефти и ее производных (1 т нефти покрывает воду пленкой на 10—12 км2 и, прежде всего, за счет аварий танкеров и работы судовых дизелей).

Основные меры борьбы с загрязнением водоемов:

1. Установление прибрежных защитных полос и водоохранных зон в соответствии с Водным кодексом Украины. В прибрежных защитных полосах (шириной 10—50 м от уреза реки) запрещаются любые работы — от распашки земли до выпаса скота, применение пестицидов, размещение предприятий и ферм. В водоохранной зоне — до 300 м от уреза воды — запрещается размещение любых объектов, которые могут оказать влияние на состояние реки, не допускается вырубка насаждений и т. п. Водоохранная зона обозначается специальными знаками. Работы в ней, в особых случаях, могут проводиться лишь по согласованию с государственными органами.

  1. Отказ от чрезвычайно ядовитых сельскохозяйственных пестицидов, прежде всего — хлорсодержащих.

  2. Уменьшение сбросов промышленных предприятий за счет снижения водоемкости производства и применения оборотных (замкнутых, полузамкнутых) систем водоснабжения.

  3. Разделение промышленных и хозяйственно-бытовых стоков. Обеспечение их очистки перед сбросами в водоемы.

  4. Снижение опасности загрязнения водоемов нефтью и нефтепродуктами как за счет повышения надежности танкеров, так и мер организационно-правового характера.

Методы очистки воды

Очистка воды предназначена для доведения всех параметров, характеризующих ее качество, до нормативных показателей. Существенно отличается очистка воды для питьевых нужд, в технологических целях (как из поверхностных водоемов, так и подземных вод) и очистка сточных вод.

Методы очистки воды при всем их многообразии можно подразделить на три группы: механические, физико-химические и биологические.

Механическая очистка применяется прежде всего для отделения твердых и взвешенных веществ. Наиболее типичными в этой группе являются способы процеживания, отстаивания, инерционного разделения, фильтрования и нефтеулавливания (как разновидность отстаивания), — справедливо для обработки сточных вод. Для водоподготовки из этой группы наиболее широко применяются отстаивание и фильтрование.

Процеживание — первичная стадия очистки сточных вод — вода пропускается через специальные металлические решетки с шагом 5—25 мм, установленные наклонно. Периодически они очищаются от осадка с помощью специальных поворотных приспособлений.

Отстаивание происходит в специальных емкостях, которые по направлению движения воды делят на горизонтальные, вертикальные, радиальные и комбинированные. Общими для них являются выход очищенной воды в верхней части отстойника и гравитационный принцип осаждения частиц, которые собираются внизу. Разновидностью отстойника являются песколовки, применяющиеся для выделения частиц песка в стоках литейных цехов, окалины — в стоках кузнечно-прессовых и прокатных цехов и т. д. Как правило, время нахождения воды в песколовках намного меньше, чем в отстойниках, где оно доходит до 1,5 часов (для сточных вод).

Инерционное разделение осуществляется в гидроциклонах, принцип действия которых аналогичен циклонам для очистки газов. Различают открытые и напорные гидроциклоны, причем первые; имеют большую производительность и малые потери напора, но проигрывают в эффективности очистки (особенно от мелких частиц).

Фильтрование осуществляется чаще всего через пористые связанные или несвязанные материалы. Как правило, фильтры очищают воду от тонкодисперсных примесей даже при небольших концентрациях. Фильтроматериалы достаточно разнообразны: кварцевый песок, гравий, антрацит, частички металлов и др. Песчаные фильтры — основные очистители при водоподготовке.

Нефтеловушки в самом простом исполнении представляют собой отстойники, в которых выход очищенной воды происходит снизу, а нефтяная пленка собирается сверху.

Физико-химическая очистка обеспечивает отделение как твердых и взвешенных частиц, так и растворенных примесей. Она включает множество разных способов, важнейшими из которых являются экстракция, флотация, нейтрализация, окисление, сорбция, коагуляция, ионообменные методы и др.

Экстракция — процесс разделения примесей в смеси двух нерастворимых жидкостей (экстрагента и сточной воды). Например, в специальных колонках (пустотелых или заполненных насадками) стоки смешиваются с экстрагентом, отбирающим вредные вещества: так бензолом удаляется фенол.

Флотация — процесс всплывания примесей (чаще всего маслопродуктов) при обволакивании их пузырьками воздуха, подаваемого в сточную воду. В некоторых случаях между пузырьками и примесями происходит реакция. Разновидность метода — электрофлотация, при которой вода дополнительно обеззараживается за счет окислительно-восстановительных процессов у электродов.

Нейтрализация — обработка воды щелочами или кислотами, известью, содой, аммиаком и т. п. с целью обеспечения заданной величины водородного показателя рН. Самый простой способ нейтрализации сточных вод — смешение кислых и щелочных стоков, если они имеются на предприятии.

Окисление — применяется как при водоподготовке, так и при обработке сточных вод для обеззараживания воды и уничтожения токсичных биологических примесей. Наиболее распространенный способ — хлорирование — чреват, как указывалось ранее, появлением диоксинов (особенно при вынужденном повышении дозы хлора летом или в период паводка, так называемом гиперхлорировании). Необходимо постепенно переходить на другие способы, например, на комбинацию — озонирование и хлорирование. Озонирование — дорого и более кратковременного действия, но оно перспективнее. В настоящее время отрабатываются комбинации реагентов с ультрафиолетовой обработкой воды. Во всяком случае, вода, применяемая для питья и содержащая характерный залах хлора, перед употреблением должна отстаиваться и кипятиться, как минимум.

Сорбция, как и при обработке газовых выбросов, способна обеспечивать эффективную очистку воды от солей тяжелых металлов, непредельных углеводородов, частичек красящих веществ и т. п. Лучшим сорбентом и здесь является активированный уголь, это относится и к различным минералам (шунгиту, цеолиту и др.), специально обработанным опилкам, саже, частичкам титана и др. На этих сорбентах работают многие бытовые фильтры для воды: «Родничок», «Роса» и др.

Коагуляция — обработка воды специальными реагентами с целью удаления нежелательных растворенных примесей. Широко распространена при водоподготовке. Обработка ведется соединениями алюминия или железа, при этом образуются твердые нерастворимые примеси, отделяемые обычными способами. Для сточных вод широко применяется электрокоагуляция, при которой вблизи электродов образуются ионы (результат анодного растворения материала электродов), реагирующие с примесями. Так отделяют тяжелые металлы, цианы и др.

Ионообменные методы достаточно эффективны для очистки от многих растворов и даже от тяжелых металлов. Очистка производится синтетической ионообменной смолой и, если ей предшествует механическая очистка, позволяет получить выделенные из воды металлы в виде сравнительно чистых концентрированных солей.

В последнее время за рубежом (особенно для водоподготовки) используют установки обратного осмоса. В них вода продавливается через набор специальных микропленок при высоком давлении (до 30 МПа). Эти установки чрезвычайно эффективны в качестве последних ступеней (т. е. для тонкой очистки). Но они достаточно дороги и энергоемки.

Биологическая очистка возможна в естественных условиях и в искусственных сооружениях. И в том, и в другом случае органические примеси обрабатываются редуцентами (бактериями, простейшими, водорослями и т. п.) и превращаются в минеральные вещества. В естественных условиях очистка производится на полях фильтрации или орошения (через почву) или в биологических прудах. Последние могут быть с поддувом воздуха (с искусственной аэрацией). В качестве искусственных сооружений могут применяться аэротенки, окситенки, метатенки и биофильтры. В тенках (аэро- с подачей воздуха; окси- с подачей кислорода; мета- без доступа воздуха) сточные воды обрабатываются микроорганизмами. Но для их нормального функционирования необходимы определенные условия по температуре, рН и отсутствию многих солей. Поэтому разновидности этих сооружений чаще всего применяются на тех очистных сооружениях канализации, куда не поступают промстоки. На промышленных очистных сооружениях чаще применяются биофильтры, в которых активная биологическая среда образуется на специальной загрузке (шлак, керамзит, гравий и т. п.). Эта биологическая среда (пленка) менее чувствительна к колебаниям параметров среды и сточных вод. Активность биопленки увеличивается при поддуве воздуха, подаваемого обычно противотоком.

Выбор способов очистки и обеззараживания воды зависит от многих параметров и требований, важнейшие из которых: необходимая степень очистки и исходная загрязненность воды, потребные расходы и время очистки, наличие очистителей и энергии и, конечно, экономические возможности. Но при всех методах очистки следует обращать внимание на вопрос утилизации осадка, образующегося при обработке воды (особенно токсичных промстоков). Как правило, осадок сейчас обезвоживается и хоронится на специальных полигонах. Или обрабатывается в биологических сооружениях. Достаточно эффективны для переработки осадков (в том числе токсичных) некоторые растения типа гиацинтов и даже тростник. Существуют специальные печи для сжигания токсичных отходов с очень высокой полнотой сгорания.