
- •Математическое моделирование в машиностроении
- •Предисловие
- •Конспект лекции
- •Раздел 1. Задачи и объекты математического моделирования в машиностроительном производстве
- •1.1 Задачи моделирования. Виды моделей
- •1.2 Классификация математических моделей
- •1.3 Требования к математическим моделям
- •4. Наглядность, т.Е. Удобное визуальное восприятие модели.
- •Раздел 2. Моделирование дискретных объектов и процессов
- •2.1. Использование множеств для моделирования технических систем
- •2.2 Операции над множествами.
- •Пример. Сборочная единица представляет собой объединение некоторого множества т-систем « деталь»
- •Раздел 3. Графы. Использование графов для моделирования технических систем
- •3.1. Элементы теории графов.
- •Раздел 4. Моделирование с использованием элементов теории вероятностей
- •4.1 Статистические исследования в задачах оценки точности
- •4.2 Теория вероятности при оценке надежности технических систем
- •4.3. Планирование эксперимента
- •Раздел 5. Моделирования процесса принятия решений
- •5.1.Логические модели представления знаний
- •Основные свойства логических операций
- •1 Ассоциативность:
- •5.2. Исчисление предикатов
- •5.3 Элементы теории принятия решений. Таблицы соответствий. Алгоритмы поиска решений
- •Раздел 6. Моделирование экономических процессов
- •6.1 Линейная и нелинейная регрессия
- •Множественная линейная корреляционная зависимость
- •Нелинейная регрессия
- •6.2 Прогнозирование экономических процессов
- •Временные ряды
- •Применение моделей кривых роста в экономическом прогнозировании
- •Заключение
- •Библиографический список
- •Раздел 2. Моделирование дискретных объектов и процессов 21
- •2.1. Использование множеств для моделирования технических систем 21
- •191186, Санкт-Петербург, ул. Миллионная, 5
1.2 Классификация математических моделей
Классификация в любой области знаний чрезвычайно важна. Она позволяет обобщить накопленный опыт, упорядочить понятия предметной области. Математические модели классифицируются по ряду признаков. В таблице 1.1 представлены виды математических моделей по различным признакам классификации.
Таблица 1.1
Классификация математических моделей
Признаки классификации |
Виды математических моделей |
Принадлежность к иерархическому уровню |
1 Модели микроуровня 2 Модели макроуровня 3 Модели метауровня |
Характер отображаемых свойств объекта |
1 Структурные 2 Функциональные |
Способ представления свойств объекта |
1 Аналитические 2 Алгоритмические 3 Имитационные |
Способ получения модели |
1 Теоретические 2 Эмпирические |
Особенности поведения объекта |
1 Детерминированные 2 Вероятностные |
Вид представления параметров |
1 Аналоговые 2 Дискретные |
Приведенная классификация математических моделей может быть применена по отношению к любым объектам. Рассмотрим особенности различных видов моделей применительно к объектам (процессам) в машиностроении.
Математические модели на микроуровне производственного процесса отражают физические процессы, протекающие, например, при резании металлов. Они описывают процессы на уровне технологического перехода (прохода). Анализ таких моделей сводится к решению краевых задач математической физики. Аппарат уравнений математической физики описывает тепловые процессы или напряженно-деформированное состояние детали.
Математические модели на макроуровне.
На макроуровне производится дискретизация пространства и переход к сосредоточенным моделям. Элементами этого уровня являются объекты, которые на микроуровне рассматривались как системы. Например, при сборке машины любая сборочная единица рассматривается как элемент, хотя представляет собой систему, состоящую из отдельных элементов- деталей.
На метауровне с помощью дальнейшего абстрагирования от характера физических процессов удается получить приемлемое по сложности описание процессов, протекающих в используемых объектах.
Математический аппарат на метауровне – теория множеств, математическая логика, теория массового обслуживания.
Структурные математические модели предназначены для отображения структурных свойств объектов и используются в тех случаях, когда можно абстрагироваться от особенностей физических процессов протекающих в объекте. Например, в САПР ТП для полного представления структуры технологического процесса, технологической операции используются структурно – логические модели.
Функциональные математические модели предназначены для отображения информационных, физических, временных процессов, протекающих в работающем оборудовании, в ходе выполнения технологических процессов и т.д. Они чаще всего имеют форму системы уравнений.
Аналитические математические модели представляют собой явные математические выражения выходных параметров как функций от параметров входных и внутренних. Это, например, выражения для определения сил резания.
Аналитическое моделирование основано на косвенном описании моделируемого объекта с помощью набора математических формул. Язык аналитического описания содержит следующие основные группы семантических элементов: критерий (критерии), неизвестные, данные, математические операции, ограничения.
Наиболее существенная характеристика аналитических моделей заключается в том, что модель не является структурно подобной объекту моделирования. Под структурным подобием здесь понимается однозначное соответствие элементов и связей модели элементам и связям моделируемого объекта.
К аналитическим относятся модели, построенные на основе аппарата математического программирования, корреляционного, регрессионного анализа. Аналитическая модель всегда представляет собой конструкцию, которую можно проанализировать и решить математическими средствами. Так, если используется аппарат математического программирования, то модель состоит в основе своей из целевой функции и системы ограничений на переменные. Целевая функция, как правило, выражает ту характеристику объекта (системы), которую требуется вычислить или оптимизировать. В частности, это может быть производительность технологической системы. Переменные выражают технические характеристики объекта (системы), в том числе варьируемые, ограничения – их допустимые предельные значения.
Аналитические модели являются эффективным инструментом для решения задач оптимизации процессов, протекающих в технологических системах, а также оптимизации и вычисления характеристик самих технологических систем.
Важным моментом является размерность конкретной аналитической модели. Часто для реальных технологических систем (автоматических линий, гибких производственных систем) размерность их аналитических моделей столь велика, что получение оптимального решения оказывается весьма сложным с вычислительной точки зрения. Для повышения вычислительной эффективности в этом случае используют различные приемы. Один из них связан с разбиением задачи большой размерности на подзадачи меньшей размерности так, чтобы автономные решения подзадач в определенной последовательности давали решение основной задачи. При этом возникают проблемы организации взаимодействия подзадач, которые не всегда оказываются простыми. Другой прием предполагает уменьшение точности вычислений, за счет чего удается сократить время решения задачи.
Алгоритмические математические модели выражают связи между выходными параметрами и параметрами входными и внутренними в виде алгоритма.
Имитационные математические модели – это алгоритмические модели, отражающие развитие процесса (поведение исследуемого объекта) во времени при задании внешних воздействий на процесс (объект). Например, это модели систем массового обслуживания, заданные в алгоритмической форме.
Имитационное моделирование основано на прямом описании моделируемого объекта. Существенной характеристикой таких моделей является структурное подобие объекта и модели. Это значит, что каждому существенному с точки зрения решаемой задачи элементу объекта ставится в соответствие элемент модели. При построении имитационной модели описываются законы функционирования каждого элемента объекта и связи между ними.
Работа с имитационной моделью заключается в проведении имитационного эксперимента. Процесс, протекающий в модели в ходе эксперимента, подобен процессу в реальном объекте. Поэтому исследование объекта на его имитационной модели сводится к изучению характеристик процесса, протекающего в ходе эксперимента.
Ценным качеством имитации является возможность управлять масштабом времени. Динамический процесс в имитационной модели протекает в так называемом системном времени. Системное время имитирует реальное время. При этом пересчет системного времени в модели можно выполнять двумя способами. Первый способ заключается в «движении» по времени с некоторым постоянным шагом. Второй способ заключается в «движении» по времени от события к событию, при этом считается, что в промежутках времени между событиями в модели изменений не происходит.
Теоретические математические модели создаются в результате исследования объектов (процессов) на теоретическом уровне. Например, существуют выражения для сил резания, полученные на основе обобщения физических законов. Но они не приемлемы для практического использования, т.к. очень громоздки и не совсем адаптированы к реальным процессам обработки материалов.
Эмпирические математические модели создаются в результате проведения экспериментов (изучения внешних проявлений свойств объекта с помощью измерения его параметров на входе и выходе) и обработки их результатов методами математической статистики.
Детерминированные математические модели описывают поведение объекта с позиций полной определенности в настоящем и будущем. Примеры таких моделей : формулы физических законов, технологические процессы обработки деталей и т.д.
Вероятностные математические модели учитывают влияние случайных факторов на поведение объекта, т.е. оценивают его будущее с позиций вероятности тех или иных событий. Примеры таких моделей: описание ожидаемых длин очередей в системах массового обслуживания, ожидаемых объемов выпуска сверхплановой продукции производственным участком, точности размеров в партии деталей с учетом явления рассеяния и т. д.
Аналоговые математические модели – это модели, свойства которых определяются законами изучаемой системы, а переменные и параметры – непрерывные величины.
Дискретные математические модели – это модели, в которых все переменные и параметры являются дискретными величинами.
Основные свойства любой модели:
целенаправленность - модель всегда отображает некоторую систему, т.е. имеет цель;
конечность - модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;
упрощенность - модель отображает только существенные стороны объекта и, кроме того, должна быть проста для исследования или воспроизведения;
приблизительность - действительность отображается моделью грубо или приблизительно;
адекватность - модель должна успешно описывать моделируемую систему;
наглядность, обозримость основных ее свойств и отношений;
доступность и технологичность для исследования или воспроизведения;
информативность - модель должна содержать достаточную информацию о системе (в рамках гипотез, принятых при построении модели) и должна давать возможность получить новую информацию;
полнота - в модели должны быть учтены все основные связи и отношения, необходимые для обеспечения цели моделирования;
устойчивость - модель должна описывать и обеспечивать устойчивое поведение системы, если даже она вначале является неустойчивой;
целостность - модель реализует некоторую систему (т.е. целое);
замкнутость - модель учитывает и отображает замкнутую систему необходимых основных гипотез, связей и отношений;
адаптивность - модель может быть приспособлена к различным входным параметрам, воздействиям окружения;
управляемость (имитационность) - модель должна иметь хотя бы один параметр, изменениями которого можно имитировать поведение моделируемой системы в различных условиях;
эволюционируемость - возможность развития моделей (предыдущего уровня).
Процедура построения математической модели включает следующие этапы:
- выбор свойства объекта, которые подлежат отражению в модели, а также установление универсальности модели ;
- сбор исходной информации о свойствах моделируемого объекта,
- получение общего вида математических соотношений модели ,
- определение числовых значений параметров модели ,
- оценка точности полученной модели и определение ее адекватности.
ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ:
1. По каким признакам производится классификация моделей?
2. Перечислите способы представления свойств объекта моделирования.
3. Какие модели используются на микро- и макроуровнях исследования производственных процессов?