
- •1.2. Условия существования управления.
- •1.3. Оптимальность управления.
- •Лекция 2
- •2.1. Этапы принятия решений
- •2.2. Схема функционирования системы управления
- •2.3. Цели и критерии эффективности.
- •Лекция 3
- •3. 1. Виды критериев.
- •3.2. Многокритериальные системы.
- •3.3. Выбор критерия в состоянии неопределенности.
- •3.4. Выявление целей и критериев.
- •3.5. Особенности построения модели управляемой системы
- •4.1. Методология и психологические аспекты принятия решений
- •4.2. Системный анализ.
- •4.3. Таблицы решений.
- •Лекция 5. Принятие решений в различных условиях.
- •5.1.Принятие решений в разомкнутых системах
- •5.2. Управление в системах с обратной связью.
- •5.3. Условия внешней среды.
- •Принятие решений в условиях определенности
- •Принятие решения в условиях риска
- •Принятие решений в условиях неопределенности
- •Принятие решений в конфликтных ситуациях
- •Лекция 6. Принятие решений и информация
- •Основные характеристики информации.
- •Лекция 7. Минимизация функции одной переменной без ограничений
- •1.1. Постановка задачи
- •1.2. Полином произвольной степени
- •1.3. Степенная функция, умноженная на экспоненциальную функцию
- •Лекция 8. 1.4. Частный случай полинома, умноженного на экспоненциальную функцию
- •1.5. Степенная функция, умноженная на экспоненциальную функцию, зависящую от полинома второй степени
- •Минимизация функции нескольких переменных без ограничений
- •2.1. Постановка задачи
- •2.2. Детализация достаточных условий экстремума.
- •Лекция 9. 2.3. Сепарабельные функции
- •2.4. Факторизованные функции
- •2.5. Сумма квадратов переменных
- •2.6. Квадратичная форма
- •2.7. Частный случай кубической формы от двух переменных
- •Частный случай кубической формы от произвольного количества переменных
- •Частный случай полинома произвольной степени от двух переменных
- •Методы условной оптимизации
- •Задача нелинейного программирования. Метод неопределенных множителей Лагранжа
- •Глава 1. Метод неопределенного множителя Лагранжа
- •Общая постановка оптимальной задачи с одним ограничением
- •Сепарабельность целевой функции и функции – ограничения. Общий алгоритм решения
- •3. Степенные функции с одинаковыми степенями частных функций
3. Степенные функции с одинаковыми степенями частных функций
Рассмотрим случай,
когда частные функции являются степенными
функциями, причем степени частных
функций в целевой функции и
функции-ограничения одинаковы, но между
функциями - различны. Пусть
,
,
,
,
.
Легко проверить, что
и
,
,
являются
выпуклыми функциями
в области
,
в которой и
ищется решение. Тогда
/
=
=
=
.
Отсюда
.
Подставляя это выражение в (3) п. 2, получаем
(
)
(
)
=
.
Тогда
=
(
(
)
)
и оптимальное значение равно
= ( ( ) ) .
Тем самым решение оптимальной задачи найдено и это решение в силу.
Рассмотрим
двойственную
задачу. Пусть
,
,
,
,
.
Решение ищем в области
Тогда
/
=
=
/
=
.
Отсюда
.
Подставляя это выражение в (3) п. 2, получаем
(
)
(
)
=
.
Тогда
=
(
(
)
)
и оптимальное значение равно
= ( ( ) ) .