Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпоры Стастистика.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.18 Mб
Скачать

37. Ошибки выборочного наблюдения и их классификация.

Возможные расхождения между характеристикой выборочной и генеральной совокупности измеряются средней ошибкой выборки . В математической статистике доказывается, что значения средней ошибки выборки определяются по формуле

где n - численность единиц выборки, - дисперсия генеральной совокупности. Генеральная дисперсия на практике, как правило, неизвестна, поэтому для определения средней ошибки используется дисперсия выборочной совокупности . Соотношение между дисперсиями в генеральной и выборочной совокупности имеет вид

При бесповторном отборе оценка средней ошибки выборки

где N - численность единиц генеральной совокупности. Бесповторное проведение отбора предполагает, что отобранная единица в генеральную совокупность не возвращается и в дальнейшем не может подвергаться повторному обследованию.

Дисперсия количественного признака в выборке определяется известной формулой

где , - значения признака у отдельных единиц и среднее значение признака в выборочной совокупности.

Дисперсия альтернативного признака в выборочной совокупности для показателя доли признака определяется по формуле

.

Альтернативным признаком называют признак, который может принимать только два значения.

Предельную ошибку выборки находят по формуле

,

где - коэффициент доверия. Величина определяется по специальным таблицам в зависимости от заданного значения доверительной вероятности F. Например, при величине требуемой доверительной вероятности коэффициент доверия

38. Методика расчёта ошибки выборочной средней.

Возможные расхождения между характеристикой выборочной и генеральной совокупности измеряются средней ошибкой выборки . В математической статистике доказывается, что значения средней ошибки выборки определяются по формуле

где n - численность единиц выборки, - дисперсия генеральной совокупности. Генеральная дисперсия на практике, как правило, неизвестна, поэтому для определения средней ошибки используется дисперсия выборочной совокупности . Соотношение между дисперсиями в генеральной и выборочной совокупности имеет вид

При достаточно большом значении n выполняется равенство поэтому для оценки средней ошибки выборки применяется формула

Эта оценка справедлива при повторном отборе единиц совокупности, который предполагает, что каждая зарегистрированная единица выборочной совокупности или их серия после обследования снова возвращаются в генеральную совокупность и в дальнейшем могут быть отобраны повторно.

При бесповторном отборе оценка средней ошибки выборки

где N - численность единиц генеральной совокупности. Бесповторное проведение отбора предполагает, что отобранная единица в генеральную совокупность не возвращается и в дальнейшем не может подвергаться повторному обследованию.

Дисперсия количественного признака в выборке определяется известной формулой

где , - значения признака у отдельных единиц и среднее значение признака в выборочной совокупности.

Дисперсия альтернативного признака в выборочной совокупности для показателя доли признака определяется по формуле

.

Альтернативным признаком называют признак, который может принимать только два значения.

В математической статистике доказывается, что пределы значений характеристик генеральной совокупности и p) отличаются от характеристик выборочной совокупности и на величину лишь с вероятностью 0,683. Вероятность правильности суждений можно повысить, если расширить пределы отклонений, приняв в качестве меры среднюю ошибку выборки, увеличенную в раз. Например, при удвоенном значении вероятность правильного суждения достигает 0,954, а при утроенном – 0,997.

Предельную ошибку выборки находят по формуле

,

где - коэффициент доверия. Величина определяется по специальным таблицам в зависимости от заданного значения доверительной вероятности F. Например, при величине требуемой доверительной вероятности коэффициент доверия