- •Оглавление.
- •Глава 1. Общие сведения.
- •Глава II. Проводниковые и резистивные материалы.
- •Глава III. Полупроводниковые материалы.
- •Глава IV. Диэлектрические материалы.
- •4.6. Контрольные вопросы.
- •Глава V. Магнитные материалы.
- •5.1. Классификация.
- •Глава VI. Конструкционные материалы.
- •Глава VII. Пассивные радиокомпоненты.
- •7.6. Контрольные вопросы.
- •Глава I. Общие сведения.
- •Основные определения.
- •3. Технологические свойства:
- •1.2. Строение радиоматериалов.
- •1.2.1. Строение атома.
- •1.2.2. Виды химических связей.
- •1.2.3. Физическое состояние материалов.
- •1.3.4. Зонная теория твёрдого тела.
- •2.2. Электрические свойства и параметры.
- •2.2.1. Удельное электрическое сопротивление.
- •2.2.2. Температурный коэффициент удельного сопротивления.
- •2.2.3. ТермоЭдс.
- •2.3. Неэлектрические свойства.
- •2.3.1. Механические свойства.
- •2.3.2. Тепловые свойства.
- •2.3.3. Технологические свойства.
- •2.3.4. Специальные свойства.
- •2.4. Материалы высокой проводимости.
- •2.4.1. Медь.
- •2.4.2. Алюминий.
- •2.6. Материалы специального назначения
- •2.6.1. Благородные металлы.
- •2.6.2. Тугоплавкие материалы.
- •2.6.3. Припои.
- •2.6.4. Неметаллические проводники.
- •2.6.4.1. Углеграфитовые материалы.
- •2.6.4.2. Композиционные резистивные и проводящие материалы.
- •2.6.5. Материалы для контактов.
- •2.6.6. Материалы для термопар.
- •2.7. Сверхпроводники и криопроводники.
- •2.8. Контрольные вопросы.
- •Глава III. Полупроводниковые материалы.
- •3.1. Историческая справка.
- •3.2 Классификация полупроводников.
- •3.3. Типы полупроводников.
- •3.3.1. Собственные полупроводники.
- •3.3.2. Примесные полупроводники.
- •3.4. Электронно-дырочный переход.
- •3.6. Параметры полупроводников.
- •3.7. Простые полупроводники.
- •3.8. Полупроводниковые соединения.
- •3.10. Термоэлектрические эффекты.
- •3.11. Эффект Холла.
- •3.12. Проводимость в сильных электрических полях.
- •3.13. Пьезоэлектрические эффекты.
- •3.15. Контрольные вопросы к разделу III.
- •Глава IV. Диэлектрические материалы.
- •4.1. Электрические свойства диэлектриков.
- •4.1.1. Поляризация диэлектриков.
- •4.1.4. Проводимость диэлектриков. Проводимость твёрдых диэлектриков.
- •4.1.5. Диэлектрические потери.
- •4.2. Неэлектрические свойства диэлектриков.
- •4.2.1. Влажностные свойства диэлектриков.
- •4.2.2. Механические свойства.
- •4.2.3. Тепловые свойства.
- •4.3. Твёрдые пассивные органические диэлектрики.
- •4.3.2. Полимеры.
- •4.3.3. Полимеры, получаемые полимеризацией.
- •4.3.4. Полимеры, получаемые поликонденсацией.
- •4.3.6. Волокнистые материалы.
- •4.3.7. Лаки и эмали.
- •4.3.8. Компаунды.
- •4.3.9. Слоистые пластики.
- •4.3.10. Эластомеры.
- •4.4. Неорганические диэлектрики.
- •4.4.1. Свойства неорганических диэлектриков.
- •4.4.3. Ситаллы (стеклокерамика).
- •4.4.4. Электротехническая керамика.
- •4.4.5. Слюда.
- •4.4.6. Асбест.
- •4.4.7. Жидкие диэлектрики.
- •4.4.8. Газообразные диэлектрики.
- •4.5. Активные диэлектрики.
- •4.5.1. Сегнетоэлектрики.
- •4.5.3. Пироэлектрики.
- •4.5.5. Материалы квантовой электроники.
- •4.5.6. Материалы с оптическими эффектами.
- •4.6. Контрольные вопросы к главе IV.
- •Глава V. Магнитные материалы.
- •5.1 Классификация.
- •5.2 Свойства ферромагнетиков.
- •5.3.1. Материалы для постоянных и низкочастотных магнитных полей.
- •5.4. Литые высококоэрцитивные сплавы.
- •5.4.2. Металлокерамические и металлопластические материалы.
- •5.4.3. Магнитотвёрдые ферриты.
- •5.5. Контрольные вопросы.
- •Глава VI. Конструкционные материалы.
- •6.1. Строение конструкционных материалов.
- •6.2. Механические свойства.
- •6.3. Производство чугуна и сталей.
- •6.4. Конструкционные металлические сплавы.
- •6.4.1. Сплавы на основе железа.
- •6.4.2. Сплавы на основе алюминия.
- •6.4.3. Сплавы на основе меди.
- •Глава VII. Пассивные радиокомпоненты.
- •7.1. Общие сведения.
- •7.2.1. Классификация.
- •7.2.2. Параметры резисторов.
- •7.2.5. Свойства резисторов.
- •7.2.6. Специальные резисторы.
- •7.3. Конденсаторы.
- •7.3.2. Классификация конденсаторов.
- •7.3.3. Условные обозначения и маркировка.
- •7.4. Катушки индуктивности.
- •7.4.1. Свойства катушек индуктивности.
- •7.4.3. Классификация катушек индуктивности.
- •7.4.4. Условные графические обозначения.
- •7.4.5. Основные параметры катушек индуктивности.
- •7.4.6. Специальные катушки индуктивности.
- •7.6. Контрольные вопросы.
4.4. Неорганические диэлектрики.
4.4.1. Свойства неорганических диэлектриков.
Неорганические диэлектрики ― это окислы кремния, алюминия, магния, калия, натрия, нитриды, фториды.
Природные неорганические диэлектрики: горные породы, минералы, слюда, асбест.
Искусственные неорганические материалы, получаемые при переработке и смешении природных или химически полученных веществ: керамика, стекло, фарфор, кварц, ситаллы.
Достоинства неорганических диэлектриков.:
– большая химическая стойкость;
– высокая нагревостойкость, термостойкость;
– влагостойкость;
– повышенная теплопроводность, негорючесть.
Недостатки неорганических диэлектриков:
– нетехнологичность, трудность механической обработки, переработки в изделия, большая твёрдость, необходимость обработки шлифованием;
– хрупкость, низкая прочность при растяжении;
– невозможность получения тонких плёнок.
В настоящее время получено много новых материалов, свойства которых не укладываются в рамки принятой классификации: органические - неорганические материалы, однородно-неоднородные материалы.
Получены элементоорганические соединения, пластмассы с органической связкой, содержащие минеральные наполнители; органические волокнистые материалы, пропитанные кремнийорганическими смолами. Свойства органических материалов улучшаются неорганическими добавками.
4.4.2. Стёкла.
Стекла ― твёрдые неорганические амфорные вещества, многокомпонентные смеси различных оксидов. Стеклообразное состояние стёкол является основной разновидностью амфорного состояния вещества. Особенность стеклообразного состояния, отличающее его от других амфорных состояний ― обратимость перехода из стеклообразного состояния в расплав и обратно (стеклование) в определённом интервале температур.
Свойства стёкол определяются их химическим составом, режимом тепловой обработки и колеблются в широких пределах. Основная масса производимых стёкол ― оксидные. Стекла называются по виду оксида- стеклообразователя: силикатные SiO2 , боратные В2О3, фосфатные Р2О3, алюмосиликатные Al2O3∙ SiO2.
По содержанию оксидов щелочных металлов различают стёкла:
– бесщелочные (кварцевое стекло);
– малощелочные с большим содержанием тяжёлых металлов ВаО, РbО и высоким удельным сопротивлением (изоляторы);
– многощелочные (оконные и бутылочные стёкла).
Стёкла получают в результате „варки” исходных компонентов стекловарочных печах. При расплавлении шихты удаляются летучие составные части (Н2О, СО2, SО3) и получается однородная стекломасса. При быстром охлаждении расплавленной стекломассы молекулы не успевают образовать кристаллическую решётку и остаются закреплёнными в случайных положениях. Стеклянные изделия для устранения внутренних механических напряжений подвергаются отжигу.
Достоинством стёкол является низкая стоимость сырья и возможность выработки стёкол с необходимыми свойствами подбором рецептуры.
Недостатком стёкол является хрупкость, хорошая смачиваемость и снижение при этом диэлектрических свойств, чувствительность к термоударам, необходимость при производстве длительно варить шихту при высокой температуре.
По применению в радиоэлектронике различают:
1. Конденсаторные стёкла. ε = 3,5÷20, tqδ = 2∙10-4.
2. Установочные стёкла. Арматура для распределительных сетей низкого напряжения, изоляторы, бусы, платы, корпуса приборов, диодов, триодов, ИС, подложки.
3. Ламповые стёкла. Колбы, баллоны.
4. Стеклоэмали. Изоляционные и антикоррозионные покрытия проводов, резисторов и др.
5. Стекловолокно. Получают из расплава бесщёлочного алюмоборосиликатного стекла. Из стеклянных нитей изготавливают световоды, изоляцию проводов, стеклянные ткани.
6. Световоды представляют собой световедущее волокно, которое применяется для передачи информации в вычислительной технике, телевидении, фототелеграфии.
