- •1. Организация курсового проектирования
- •1.1. Тематика и содержание курсовых проектов
- •1.2. Последовательность выполнения курсового проекта
- •1.3. Содержание и оформление пояснительной записки
- •1.4. Содержание и оформление чертежей
- •2. Обеспечение работоспособности станков
- •2.1. Обеспечение геометрической и кинематической точности
- •2. Обеспечение жесткости
- •2.3. Обеспечение теплостойкости
- •2.4 Обеспечение удовлетворительных шумовых характеристик
- •2.5. Обеспечение надежности
- •3. Детали станков и элементы приводов
- •3.1. Нерегулируемые асинхронные электродвигатели
- •3.2. Регулируемые электродвигатели постоянного тока для приводов главного движения
- •3.3. Регулируемые электродвигатели для приводов подачи
- •3.4. Цилиндрические зубчатые передачи
- •3.5. Передачи зубчатым ремнем
- •3.6. Электромагнитные муфты
- •3.7. Смазочные системы
- •4. Приводы главного движения со ступенчатым регулированием
- •4.1. Ряды частот вращения шпинделя
- •4.2. Типы передач
- •4.3. Приводы с последовательно соединенными групповыми передачами
- •4.4. Приводы с частичным перекрытием ступеней частоты вращения
- •4.5. Приводы с выпадением ступеней частоты вращения
- •4.6. Приводы сложенной структуры
- •4.7. Приводы с двухскоростным электродвигателем
- •4.8. Приводы со сменными зубчатыми колесами
- •4.9. Последовательность кинематического расчета привода
- •4.10. Определение нагрузок на привод
- •4.11. Определение потерь мощности в приводе
- •4.12. Выбор асинхронного электродвигателя для привода'
- •4.13. Рекомендации по конструированию приводов
- •4.14. Расчет динамических характеристик привода
- •5. Приводы главного движения с бесступенчатым регулированием
- •5.1. Типовые структуры приводов с двигателем постоянного тока
- •5.2. Кинематический расчет привода
- •5.3. Определение нагрузки на привод
- •5. 4. Рекомендации по конструированию приводов
- •6. Шпиндельные узлы с опорами качения
- •6.1. Требования к шпиндельным узлам
- •6.2. Приводы шпинделей
- •6.3. Конструкции переднего конца шпинделя
- •6.4. Подшипники качения для опор шпинделей
- •6.5. Способы смазывания подшипников качения жидким материалом
- •6.6. Способы смазывания подшипников качения пластичным материалом
- •6.7. Уплотнения шпиндельных узлов
- •6.9. Типовые компоновки шпиндельных узлов
- •6.9. Примеры шпиндельных узлов
- •6.10. Расчет жесткости опор шпинделя
- •6.11. Расчет жесткости шпиндельного узла
- •6.12. Расчет динамических характеристик шпиндельного узла
- •6.13. Расчет точности шпиндельного узла
- •6.14. Рекомендации по конструированию шпиндельных узлов
- •6.15. Об автоматизированном проектировании шпиндельного узла
- •7. Шпиндельные узлы с опорами скольжения
- •7.1. Шпиндельные узлы с гидростатическими опорами
- •7.2. Шпиндельные узлы с гидродинамическими опорами
- •8.Тяговые устройства привода подачи
- •8.1. Передача винт-гайка качения
- •8.2. Расчет передачи винт-гайка качения
- •83. Передача винт-гайка скольжения
- •8.4. Передача червяк-рейка качения
- •8.5. Гидростатическая червячно-реечная передача
- •9. Электромеханические приводы подачи с бесступенчатым регулированием
- •9.1. Свойства приводов
- •9.2. Структуры приводов
- •9.3. Элементы исполнительного механизма приводов
- •9.4. Пример исполнительного механизма привода подачи
- •9.5. Выбор регулируемого электродвигателя для привода подачи
- •9.6. Расчет осевой жесткости привода подачи
- •10. Электромеханические приводы подачи со ступенчатым регулированием
- •10.1. Структуры и механизмы приводов
- •10.2. Кинематический расчет привода
- •10.3. Выбор асинхронного электродвигателя для привода подачи
- •10.4. Выбор электродвигателя для вспомогательного привода
- •10.5. Рекомендации по конструированию приводов подачи
- •11. Направляющие скольжения
- •11.1. Требования к направляющим
- •11.2. Направляющие с полужидкостной смазкой
- •11.3. Гидростатические направляющие
- •12. Направляющие качения и комбинированные
- •12.1. Свойства направляющих качения
- •12.2. Направляющие без циркуляции тел качения
- •12.3. Направляющие с циркуляцией тел качения
- •12.4. Комбинированные направляющие
- •13. Проектирование станков с числовым программным управлением
- •13.1. Токарные станки
- •13.2. Фрезерные станки
- •13.3. Вертикально-сверлильные станки
- •13.4. Многоцелевые станки
- •13.5. Гибкие производственные модули
- •13.6. Револьверные головки
- •13.7. Инструментальные автооператоры
- •13.8. Расчет механизмов автоматической смены инструментов
- •13.9. Механизмы для автоматического зажима инструментов
- •13.10. Устройства для автоматической смены заготовок
- •14. Проектирование агрегатных станков
- •14.1. Свойства агрегатных станков
- •14.2. Силовые головки
- •14.3. Силовые столы
- •14.4. Инструментальные бабки
- •14.5. Поворотные делительные столы
- •14.6. Шпиндельные коробки
- •14.7. Последовательность проектирования агрегатного станка
10.5. Рекомендации по конструированию приводов подачи
Механизм подачи получает движение от отдельного электродвигателя или от шпинделя станка. Если необходимо обеспечить жесткую кинематическую связь между шпинделем и тяговым устройством, что требуется, например, при нарезании резьбы, ременную или цепную передачи в привод встраивать нельзя. Кроме передач, необходимых для редукции и регулирования подачи, в привод включают устройство для реверсирования подачи, предохранительное устройство, цепь передач для быстрых ходов суппорта, устройство для включения механизма подач.
В качестве устройств для реверсирования подачи применяют механизмы с цилиндрическими или коническими колесами, а также с составным зубчатым колесом. Предохранительное устройство помещают между коробкой подач и тяговым устройством. Цепь передач для быстрых ходов суппорта может иметь привод или от отдельного электродвигателя или от привода подачи. Цепь быстрых ходов соединяют с цепью рабочих подач в самом конце последней. Устройство для включения механизма подач выполняют в виде передвижного колеса, кулачковой или фрикционной муфты и помещают в начале цепи подачи.
Большинство валов, входящих в состав коробок передач, относятся к малонагруженным. Они вращаются медленно. Их диаметр обусловлен требованиями жесткости. Такие валы изготовляют из стали 45 и не подвергают упрочняющей термической обработке.
11. Направляющие скольжения
11.1. Требования к направляющим
Проектирование направляющих включает выбор их типа, разработку конструкции, выбор системы смазывания и защитных устройств. Направляющие должны обеспечивать точность перемещения, движения или положения рабочего органа станка, быть жесткими, долговечными, обладать хорошими демпфирующими свойствами- При проектировании направляющих выполняют расчеты среднего или максимального давления, скорости изнашивания, критической скорости движения рабочего органа, жесткости.
Металлорежущие станки оснащают направляющими скольжения, качения и комбинированными. Направляющие скольжения могут быть с полужидкостной, жидкостной и газовой смазкой. Комбинированные объединяют достоинства направляющих разных типов.
Применяют направляющие прямолинейного и кругового движения, горизонтального, вертикального и наклонного исполнения.
Точность движения по направляющим рабочего узла, несущего заготовку или инструмент, зависит от первоначальной точности изготовления направляющих, жесткости и температурных деформаций корпусных деталей, зазоров в направляющих, обусловливающих переориентацию узлов при реверсе. Так, зазор в направляющих скольжения полужидкостного трения, составляющий 0,02...0,03 мм, приводит при реверсах к такому же по величине смещению (переориентации) рабочего органа и еще большему искажению траектории режущего инструмента.
Жесткость направляющих, обусловливающая смещение узлов под нагрузкой, зависит главным образом от типа направляющих. Из-за наличия регулировочных клиньев и прижимных планок, обладающих низкой собственной жесткостью, направляющие скольжения с полужидкостной смазкой имеют более низкую жесткость по сравнению с направляющими качения и комбинированными.
Силы трения в направляющих оказывают влияние на тепловыделение и их температурные деформации, мощность привода перемещающегося узла, рассогласование в следящей системе, погрешность позиционирования и зону нечувствительности. Силы трения зависят от типа направляющих (низкие — в аэростатических, гидростатических и направляющих качения, высокие — в направляющих скольжения с полужидкостной смазкой), а также от материалов пары трения, качества смазочного материала.
Разность
сил
трения покоя и движения, зависящая от
разности
соответствующих коэффициентов трения,
обусловливает погрешность
позиционирования узла:
где j— жесткость привода подачи.
На разность коэффициентов трения покоя и движения оказывают влияние тип направляющих, материалы пары трения, вид трения.
