
- •1. Организация курсового проектирования
- •1.1. Тематика и содержание курсовых проектов
- •1.2. Последовательность выполнения курсового проекта
- •1.3. Содержание и оформление пояснительной записки
- •1.4. Содержание и оформление чертежей
- •2. Обеспечение работоспособности станков
- •2.1. Обеспечение геометрической и кинематической точности
- •2. Обеспечение жесткости
- •2.3. Обеспечение теплостойкости
- •2.4 Обеспечение удовлетворительных шумовых характеристик
- •2.5. Обеспечение надежности
- •3. Детали станков и элементы приводов
- •3.1. Нерегулируемые асинхронные электродвигатели
- •3.2. Регулируемые электродвигатели постоянного тока для приводов главного движения
- •3.3. Регулируемые электродвигатели для приводов подачи
- •3.4. Цилиндрические зубчатые передачи
- •3.5. Передачи зубчатым ремнем
- •3.6. Электромагнитные муфты
- •3.7. Смазочные системы
- •4. Приводы главного движения со ступенчатым регулированием
- •4.1. Ряды частот вращения шпинделя
- •4.2. Типы передач
- •4.3. Приводы с последовательно соединенными групповыми передачами
- •4.4. Приводы с частичным перекрытием ступеней частоты вращения
- •4.5. Приводы с выпадением ступеней частоты вращения
- •4.6. Приводы сложенной структуры
- •4.7. Приводы с двухскоростным электродвигателем
- •4.8. Приводы со сменными зубчатыми колесами
- •4.9. Последовательность кинематического расчета привода
- •4.10. Определение нагрузок на привод
- •4.11. Определение потерь мощности в приводе
- •4.12. Выбор асинхронного электродвигателя для привода'
- •4.13. Рекомендации по конструированию приводов
- •4.14. Расчет динамических характеристик привода
- •5. Приводы главного движения с бесступенчатым регулированием
- •5.1. Типовые структуры приводов с двигателем постоянного тока
- •5.2. Кинематический расчет привода
- •5.3. Определение нагрузки на привод
- •5. 4. Рекомендации по конструированию приводов
- •6. Шпиндельные узлы с опорами качения
- •6.1. Требования к шпиндельным узлам
- •6.2. Приводы шпинделей
- •6.3. Конструкции переднего конца шпинделя
- •6.4. Подшипники качения для опор шпинделей
- •6.5. Способы смазывания подшипников качения жидким материалом
- •6.6. Способы смазывания подшипников качения пластичным материалом
- •6.7. Уплотнения шпиндельных узлов
- •6.9. Типовые компоновки шпиндельных узлов
- •6.9. Примеры шпиндельных узлов
- •6.10. Расчет жесткости опор шпинделя
- •6.11. Расчет жесткости шпиндельного узла
- •6.12. Расчет динамических характеристик шпиндельного узла
- •6.13. Расчет точности шпиндельного узла
- •6.14. Рекомендации по конструированию шпиндельных узлов
- •6.15. Об автоматизированном проектировании шпиндельного узла
- •7. Шпиндельные узлы с опорами скольжения
- •7.1. Шпиндельные узлы с гидростатическими опорами
- •7.2. Шпиндельные узлы с гидродинамическими опорами
- •8.Тяговые устройства привода подачи
- •8.1. Передача винт-гайка качения
- •8.2. Расчет передачи винт-гайка качения
- •83. Передача винт-гайка скольжения
- •8.4. Передача червяк-рейка качения
- •8.5. Гидростатическая червячно-реечная передача
- •9. Электромеханические приводы подачи с бесступенчатым регулированием
- •9.1. Свойства приводов
- •9.2. Структуры приводов
- •9.3. Элементы исполнительного механизма приводов
- •9.4. Пример исполнительного механизма привода подачи
- •9.5. Выбор регулируемого электродвигателя для привода подачи
- •9.6. Расчет осевой жесткости привода подачи
- •10. Электромеханические приводы подачи со ступенчатым регулированием
- •10.1. Структуры и механизмы приводов
- •10.2. Кинематический расчет привода
- •10.3. Выбор асинхронного электродвигателя для привода подачи
- •10.4. Выбор электродвигателя для вспомогательного привода
- •10.5. Рекомендации по конструированию приводов подачи
- •11. Направляющие скольжения
- •11.1. Требования к направляющим
- •11.2. Направляющие с полужидкостной смазкой
- •11.3. Гидростатические направляющие
- •12. Направляющие качения и комбинированные
- •12.1. Свойства направляющих качения
- •12.2. Направляющие без циркуляции тел качения
- •12.3. Направляющие с циркуляцией тел качения
- •12.4. Комбинированные направляющие
- •13. Проектирование станков с числовым программным управлением
- •13.1. Токарные станки
- •13.2. Фрезерные станки
- •13.3. Вертикально-сверлильные станки
- •13.4. Многоцелевые станки
- •13.5. Гибкие производственные модули
- •13.6. Револьверные головки
- •13.7. Инструментальные автооператоры
- •13.8. Расчет механизмов автоматической смены инструментов
- •13.9. Механизмы для автоматического зажима инструментов
- •13.10. Устройства для автоматической смены заготовок
- •14. Проектирование агрегатных станков
- •14.1. Свойства агрегатных станков
- •14.2. Силовые головки
- •14.3. Силовые столы
- •14.4. Инструментальные бабки
- •14.5. Поворотные делительные столы
- •14.6. Шпиндельные коробки
- •14.7. Последовательность проектирования агрегатного станка
83. Передача винт-гайка скольжения
Свойства передачи. Для передачи винт-гайка скольжения характерны:
возможность использования малого шага и соответственно малое передаточное отношение при однозаходней резьбе и небольшой скорости подачи;
самоторможение при использовании одно- и двухзаходных винтов и соответственно возможность применения передачи для вертикальных движений и узлов, совершающих установочные перемещения под нагрузкой;
относительно низкая износостойкость;
низкий КПД, определяемый по зависимости
где
угол
подъема винтовой линии резьбы, лежащей
на среднем цилиндре;
угол трения в
резьбе:
(
М — коэффициент трения в резьбе, зависящий
от скорости скольжения:
Материалы для деталей передачи. Винты передач скольжения изготовляют упрочняемыми и неупрочняемыми. Упрочняемые винты применяют в том случае, когда их долговечность должна быть не ниже межремонтного цикла станка. Упрочнением до твердости не менее 54 HRC3 достигают повышенной износостойкости винта, но при этом необходимо обеспечить его минимальную деформацию в результате упрочнения и последующей механической обработки, стабильность формы при длительной эксплуатации. Винты классов точности 0,1 и 2 наружного диаметра до 60 мм, имеющие среднюю или высокую жесткость, рекомендуется изготовлять из стали ХВГ и подвергать объемной закалке. Для винтов диаметром до 120 мм пригодна также сталь 7ХГ2ВМ, имеющая незначительную термическую деформацию, вследствие чего упрочнение винтов может производиться после нарезания резьбы. Винты классов 1, 2 и 3 любого диаметра целесообразно изготовлять из азотируемых сталей ЗОХЗМФ, 18ХГТ, 40ХФА, 38Х2МЮА. Толщина азотированного слоя должна быть не менее 0,3 мм. Такие винты отличаются высокой износостойкостью и стабильностью формы в процессе эксплуатации. Неупрочняемые винты изготовляют из сталей 35 и 45 в нормализованном состоянии и стали У10А в отожженном состоянии, имеющей структуру зернистого перлита. Для этих сталей характерны хорошая обрабатываемость резанием и минимальные деформации в процессе изготовления винта.
Для изготовления гаек применяют оловянистые бронзы Бр 010Ф0,5, Бр 06Ц6СЗ (для прецизионных передач), антифрикционный чугун (для неответственных гаек).
Конструкция передачи. На гайке и винте нарезают трапецеидальную резьбу обычно стандартного профиля с углом 30°. Винты с такой резьбой технологичны, но радиальное биение их создает погрешности шага. Поэтому прецизионные передачи делают с резьбой, имеющей угол профиля 1O...2O0.
Зазор в резьбе регулируют и устраняют двумя способами. Первый состоит в том, что гайку изготавливают из двух полугаек, одну из них прикрепляют к столу или суппорту, другую с помощью клина, прокладок или резьбового соединения перемещают в осевом направлении. Регулирование по второму способу достигают в результате поворота одной полугайки относительно другой при неизменном осевом расположении.
Размеры гайки и ходового винта определяют в результате расчета передачи на износостойкость, а также расчета ходового винта на прочность, жесткость и устойчивость.
Расчет передачи на износостойкость. Износостойкость передачи зависит от давления в контакте между гайкой и винтом. Определяют среднее давление (Па):
где Q — наибольшая тяговая сила, Н; р — шаг винта, м; d — средний диаметр резьбы, м; h —рабочая высота профиля резьбы, м; / — длина гайки, м.
С учетом соотношений между параметрами гайки получают
где
допускаемое давление в контакте: для
точных передач с бронзовой гайкой в
токарно-винторезных и резьбонарезных
станках
Па, для других передач с такой же гайкой
Па, для передач с чугунной гайкой
Расчет винта на жесткость. Под действием тяговой сипы шаг передачи изменяется на
(8. 10)
где Е - модуль упругости материала винта; F — площадь поперечного сечения стержня винта.
С
учетом допуска на шаг резьбы ограничивают
и по зависимости (8.10) определяют требуемый
диаметр винта. Осевую жесткость привода
подачи находят по зависимостям,
применяемым для приводов с передачей
винт—гайка качения.
Расчет винта на прочность. Винт работает на растяжение (сжатие) и кручение. Приведенное напряжение
(8.11)
где
нормальное
напряжение;
касательное
напряжение; W—
момент
сопротивления сечения стержня винта
при кручении.
Допускаемое
приведенное напряжение назначают,
исходя из предела текучести материала
винта:
и
по зависимости (8.11) находят его требуемый
диаметр
Расчет винта на устойчивость. Этот расчет выполняется для длинных винтов, работающих на сжатие. Критически тяговая сила
(8.12)
где / — момент инерции поперечного сечения стержня винта; v — коэффициент длины (когда оба конца винта заделаны, v = 0,5, при одном заделанном и другом шарнирном v = 0,7, при обоих шарнирных v = 1).
Требуемый
диаметр находят по зависимости (8.12) с
учетом необходимого запаса устойчивости
я п
=
2,5...4 (
Большие
значения запаса устойчивости берут при
действии на винт поперечных сил.