
- •1. Организация курсового проектирования
- •1.1. Тематика и содержание курсовых проектов
- •1.2. Последовательность выполнения курсового проекта
- •1.3. Содержание и оформление пояснительной записки
- •1.4. Содержание и оформление чертежей
- •2. Обеспечение работоспособности станков
- •2.1. Обеспечение геометрической и кинематической точности
- •2. Обеспечение жесткости
- •2.3. Обеспечение теплостойкости
- •2.4 Обеспечение удовлетворительных шумовых характеристик
- •2.5. Обеспечение надежности
- •3. Детали станков и элементы приводов
- •3.1. Нерегулируемые асинхронные электродвигатели
- •3.2. Регулируемые электродвигатели постоянного тока для приводов главного движения
- •3.3. Регулируемые электродвигатели для приводов подачи
- •3.4. Цилиндрические зубчатые передачи
- •3.5. Передачи зубчатым ремнем
- •3.6. Электромагнитные муфты
- •3.7. Смазочные системы
- •4. Приводы главного движения со ступенчатым регулированием
- •4.1. Ряды частот вращения шпинделя
- •4.2. Типы передач
- •4.3. Приводы с последовательно соединенными групповыми передачами
- •4.4. Приводы с частичным перекрытием ступеней частоты вращения
- •4.5. Приводы с выпадением ступеней частоты вращения
- •4.6. Приводы сложенной структуры
- •4.7. Приводы с двухскоростным электродвигателем
- •4.8. Приводы со сменными зубчатыми колесами
- •4.9. Последовательность кинематического расчета привода
- •4.10. Определение нагрузок на привод
- •4.11. Определение потерь мощности в приводе
- •4.12. Выбор асинхронного электродвигателя для привода'
- •4.13. Рекомендации по конструированию приводов
- •4.14. Расчет динамических характеристик привода
- •5. Приводы главного движения с бесступенчатым регулированием
- •5.1. Типовые структуры приводов с двигателем постоянного тока
- •5.2. Кинематический расчет привода
- •5.3. Определение нагрузки на привод
- •5. 4. Рекомендации по конструированию приводов
- •6. Шпиндельные узлы с опорами качения
- •6.1. Требования к шпиндельным узлам
- •6.2. Приводы шпинделей
- •6.3. Конструкции переднего конца шпинделя
- •6.4. Подшипники качения для опор шпинделей
- •6.5. Способы смазывания подшипников качения жидким материалом
- •6.6. Способы смазывания подшипников качения пластичным материалом
- •6.7. Уплотнения шпиндельных узлов
- •6.9. Типовые компоновки шпиндельных узлов
- •6.9. Примеры шпиндельных узлов
- •6.10. Расчет жесткости опор шпинделя
- •6.11. Расчет жесткости шпиндельного узла
- •6.12. Расчет динамических характеристик шпиндельного узла
- •6.13. Расчет точности шпиндельного узла
- •6.14. Рекомендации по конструированию шпиндельных узлов
- •6.15. Об автоматизированном проектировании шпиндельного узла
- •7. Шпиндельные узлы с опорами скольжения
- •7.1. Шпиндельные узлы с гидростатическими опорами
- •7.2. Шпиндельные узлы с гидродинамическими опорами
- •8.Тяговые устройства привода подачи
- •8.1. Передача винт-гайка качения
- •8.2. Расчет передачи винт-гайка качения
- •83. Передача винт-гайка скольжения
- •8.4. Передача червяк-рейка качения
- •8.5. Гидростатическая червячно-реечная передача
- •9. Электромеханические приводы подачи с бесступенчатым регулированием
- •9.1. Свойства приводов
- •9.2. Структуры приводов
- •9.3. Элементы исполнительного механизма приводов
- •9.4. Пример исполнительного механизма привода подачи
- •9.5. Выбор регулируемого электродвигателя для привода подачи
- •9.6. Расчет осевой жесткости привода подачи
- •10. Электромеханические приводы подачи со ступенчатым регулированием
- •10.1. Структуры и механизмы приводов
- •10.2. Кинематический расчет привода
- •10.3. Выбор асинхронного электродвигателя для привода подачи
- •10.4. Выбор электродвигателя для вспомогательного привода
- •10.5. Рекомендации по конструированию приводов подачи
- •11. Направляющие скольжения
- •11.1. Требования к направляющим
- •11.2. Направляющие с полужидкостной смазкой
- •11.3. Гидростатические направляющие
- •12. Направляющие качения и комбинированные
- •12.1. Свойства направляющих качения
- •12.2. Направляющие без циркуляции тел качения
- •12.3. Направляющие с циркуляцией тел качения
- •12.4. Комбинированные направляющие
- •13. Проектирование станков с числовым программным управлением
- •13.1. Токарные станки
- •13.2. Фрезерные станки
- •13.3. Вертикально-сверлильные станки
- •13.4. Многоцелевые станки
- •13.5. Гибкие производственные модули
- •13.6. Револьверные головки
- •13.7. Инструментальные автооператоры
- •13.8. Расчет механизмов автоматической смены инструментов
- •13.9. Механизмы для автоматического зажима инструментов
- •13.10. Устройства для автоматической смены заготовок
- •14. Проектирование агрегатных станков
- •14.1. Свойства агрегатных станков
- •14.2. Силовые головки
- •14.3. Силовые столы
- •14.4. Инструментальные бабки
- •14.5. Поворотные делительные столы
- •14.6. Шпиндельные коробки
- •14.7. Последовательность проектирования агрегатного станка
4.4. Приводы с частичным перекрытием ступеней частоты вращения
Если
диапазон регулирования привода нормальной
структуры больше расчетного, для его
уменьшения можно подкорректировать
структуру, создав частичное перекрытие
ступеней частоты вращения. Способ
состоит в уменьшении на
характеристики
последней 1-й
группы.
При этом общее число ступеней привода
уменьшается на
и
становится равным
фактическая характеристика исправленной 1-й группы
а общий
диапазон регулирования привода
уменьшается в
раз.
Пример
2. Исправим
нормальную структуру, приведенную в
примере 1, путем уменьшения
на
характеристики
последней
группы с целью получения перекрытия
ступеней частот вращения на последнем
валу, Фактическая характеристика
последней группы
Фактическое
число ступеней частоты вращения на
последнем валу
Структурная
сетка исправленной структуры приведена
на рис. 4.2, б.
4.5. Приводы с выпадением ступеней частоты вращения
Если
в нормальной структуре диапазон
регулирования последней передачи больше
допустимого, структуру можно исправить
за счет выпадения частот вращения
на последнем валу. Для этого уменьшают
характеристику
промежуточной 1-й групповой передачи,
создают перекрытие ее
-ступеней.
Фактическое
число ступеней частоты вращения на
ведомых валах от
до /-й передачи
Число выпавших ступеней частоты вращения
Пример
3.
Исправим нормальную структуру, приведенную
в примере 1, путем уменьшения на
характеристики
третьей
группы с целью получения структуры с
выпадением ступеней частот вращения.
При этом, фактическая характеристика
этой группы
,
число
ступеней
частот вращения на ведомом валу этой
передачи
,
Фактическое число ступеней вращения
на последнем валу
число
выпавших ступеней частоты вращения
.
В структурной сетке структуры с четырьмя
выпавшими ступенями частоты вращения
(рис. 4.2, в) следует уменьшить диапазон
регулирования последней группы.
4.6. Приводы сложенной структуры
Сложенную структуру получают из двух или более определенным образом соединенных структур с последовательно включенными групповыми передачами. Одна из соединяемых структур называется основной, другие - дополнительными. Основная структура участвует в передаче на шпиндель всех ступеней частоты вращения, каждая дополнительная используется для передачи только части ступеней. Разработан ряд вариантов сложенных структур [ 90], один из них приведен на рис. 4.3, где 1.— основная структура с z° ступенями вращения, 2 — дополнительная структура с z ступенями вращения. Этот привод обеспечивает на шпинделе z = z° + z°z =z°(l+z') различных частот вращения.
Структурные формулу и сетку для основной структуры строят так же, как для привода с последовательно соединенными групповыми передачами. Характеристика первой группы дополнительной структуры равна числу ступеней частоты вращения основной структуры. Для каждой дополнительной структуры строят отдельную структурную сетку.
По сравнению с обычными структурами, образуемыми последовательным соединением групповых передач, сложенные структуры обладают рядом преимуществ. Они позволяют получать большое число ступеней частоты вращения и передавать высокие частоты с помощью коротких кинематических цепей. В приводах сложенной структуры потери мощности относительно невелики.
Пример 4. Пусть основная структура привода, изображенного на рис. 4.3, обеспечивает 6 ступеней частоты вращения, дополнительная - 4 ступени. Шпиндель станка с таким приводом имеет г = 6(1 + 4)=30 скоростей вращения. Одна из структурных формул привода:
Структурные сетки привода изображены на рис. 4.3, б, график частот вращения - на рис. 4.3,
в
.