
- •1,2 Действие электрического тока на человека, виды травм
- •3 Предельно допустимые токи и напряжения прикосновения
- •4 Электрическое сопротивление тела человека, факторы, влияющие на электрическое сопротивление
- •5 Классификация помещений по опасности воздействия электрического тока
- •6 Виды аварийного включения человека в электрическую сеть, оценка опасности включения
- •7 Шаговое напряжение.
- •8 Источники и опасность воздействия электростатического поля на человека, нормирование.
- •9 Источники и опасность воздействия э/м поля промышленной частоты на человека, нормирование
- •10 Воздействие э/м полей радиочастот на человека. Влияние частоты поля на характер воздействия. Дезадаптирующее действие э/м поля
- •11 Нормирование э/м полей радиочастот в пс и ос
- •12 Воздействий уф излучения, классификация излучения, "световое голодание", профессиональные поражения, нормирование уф излучения
- •13 Виды ионизирующих излучений в пс и ос, поглощенная и эквивалентная дозы
- •14 Естественные и антропогенные источники ионизирующих излучений в ос
- •15 Биологическое действие ионизирующих излучений, их нормирование
- •16 Защита от вредных факторов уменьшением времени экспозиции на примере электромагнитных излучений
- •17 Защита расстоянием, санитарно-защитные зоны
- •18 Общие принципы защиты экранированием. Оценка эффективности
- •19 Защитное заземление, принцип действия
- •20 Зануление, схема, применение
- •21 Защита от статического электричества
- •22 Виды и свойства пожаровзрывоопасных веществ
- •23 Оценка пожарной опасности помещений и зданий, категории пожаровзрывоопасности
- •24 Определение безопасности воздействия опасных факторов пожара на людей
- •25 Метод определения максимально возможной массы пожаровзрывоопасных веществ, обращающихся в помещении.
- •26 Аттестация рабочих мест.
11 Нормирование э/м полей радиочастот в пс и ос
Предельно допустимый уровень напряженности ЭП на рабочем месте в течение всей смены устанавливается равным 5 кВ/м.
3.4.2.2. При напряженностях в интервале больше 5 до 20 кВ/м включительно допустимое время пребывания в ЭП Т (час) рассчитывается по формуле:
Т = (50/Е) - 2, где
Е - напряженность ЭП в контролируемой зоне, кВ/м;
Т - допустимое время пребывания в ЭП при соответствующем уровне напряженности, ч.
3.4.2.3. При напряженности свыше 20 до 25 кВ/м допустимое время пребывания в ЭП составляет 10 мин.
3.4.2.4. Пребывание в ЭП с напряженностью более 25 кВ/м без применения средств защиты не допускается.
3.4.2.5. Допустимое время пребывания в ЭП может быть реализовано одноразово или дробно в течение рабочего дня. В остальное рабочее время необходимо находиться вне зоны влияния ЭП или применять средства защиты.
3.4.2.6. Время пребывания персонала в течение рабочего дня в зонах с различной напряженностью ЭП (Т_пр) вычисляют по формуле:
,
где
Тпр - приведенное время, эквивалентное по биологическому эффекту ребыванию в ЭП нижней границы нормируемой напряженности;
TЕ1 , tЕ2 , ... tЕn - время пребывания в контролируемых зонах с апряженностью E1, Е2, ... En, ч;
TЕ1 , TЕ2, ...TЕn - допустимое время пребывания для соответствующих онтролируемых зон.
Приведенное время не должно превышать 8 ч.
3.4.2.7. Количество контролируемых зон определяется перепадом уровней напряженности ЭП на рабочем месте. Различие в уровнях напряженности ЭП контролируемых зон устанавливается 1 кВ/м.
3.4.2.8. Требования действительны при условии, что проведение работ не связано с подъемом на высоту, исключена возможность воздействия электрических разрядов на персонал, а также при условии защитного заземления всех изолированных от земли предметов, конструкций, частей оборудования, машин и механизмов, к которым возможно прикосновение работающих в зоне влияния ЭП.
12 Воздействий уф излучения, классификация излучения, "световое голодание", профессиональные поражения, нормирование уф излучения
Ультрафиолетовые излучения оказывают на организм человека действия физико-химического и биологического характера. При длине волны от 400 нм до 320 нм они характеризуются слабым биологическим действием; от 320 до 280 нм – действуют на кожу; от 280 нм до 200 нм – на тканевые белки и липоиды. Ультрафиолетовое излучение более короткого диапазона (от 180 нм и ниже) сильно поглощается всеми материалами и средами, в том числе и воздухом, а потому может иметь место только в условиях вакуума. Ультрафиолетовые лучи обладают способностью вызывать фотоэлектрический эффект, проявлять фотохимическую активность (развитие фотохимических реакций), вызывать люминесценцию и обладают значительной биологической активностью. При этом ультрафиолетовые лучи области А отличаются сравнительно слабым биологическим действием, возбуждают флюоресценцию органических соединений. Лучи области В обладают сильным эритемным и антирахитическим действием, а лучи области С активно действуют на тканевые белки и липиды, вызывают гемолиз и обладают выраженным антирахитическим действием. Избыток и недостаток этого вида излучения представляет опасность для организма человека. Воздействие на кожу больших доз ультрафиолетового излучения вызывает кожные заболевания – дерматиты. Пораженный участок имеет отечность, ощущаются жжение и зуд. При воздействии повышенных доз ультрафиолетового излучения на центральную нервную систему характерны следующие симптомы заболеваний: головная боль, тошнота, головокружение, повышение температуры тела, повышенная утомляемость, нервное возбуждение и др. Ультрафиолетовые лучи с длиной волны менее 0,32 мкм, дей-ствуя на глаза, вызывают заболевание, называемое электроофтальмией. Человек уже на начальной стадии этого заболевания ощущает резкую боль и ощущение песка в глазах, ухудшение зрения, головную боль. Заболевание сопровождается обильным слезотечением, а иногда светобоязнью и поражением роговицы. Оно быстро проходит (через один-два дня), если не продолжается воздействие ультрафиолетового излучения.
УФ диапазон условно делят на ближний (380—200 нм) и дальний, или вакуумный (200—10 нм) ультрафиолет. Последний так назван, поскольку интенсивно поглощается атмосферой, и распространяется только в вакуумированных камерах.
По действию УФ на живые организмы ближний УФ делится на ультрафиолет А, B и C.
Ультрафиолет А (UVA), длинноволновой диапазон, «чёрный свет» 400 - 315 нм; Ультрафиолет B (UVB) средний диапазон 315 - 280 нм; Ультрафиолет С (UVC) коротковолновой, гермицидный диапазон 280 - 100 нм. Излучение из диапазона UVA достаточно слабо поглощается атмосферой. Поэтому радиация, достигающая поверхности Земли, в значительной степени содержит ближний ультрафиолет UVA, и, в небольшой доле, UVB.
Практически весь UVC и приблизительно 90 % UVB поглощаются озоном, а также водным паром, кислородом и углекислым газом при прохождении солнечного света через земную атмосферу. 200нм -300нм - та область, в которой излучение Солнца полностью поглощается озоновым слоем Земли. Преимуществом диапазона UVC является то, что в нём отсутствует фоновое излучение, благодаря чему достигается высокая чувствительность. Спектроскописты называют этот спектральный диапазон «solar blind» , поскольку детекторы этого диапазона работают без помех на ярком солнце. Недостатком является то, что, на сегодняшний день, существует мало приёмников, которые работают в данном диапазоне.
По классификации международной комиссии по освещению (CIE) спектр УФ - излучения делится на три диапазона: длинноволновое (400 - 315 нм) средневолновое (280 - 315 нм) коротковолновое (100 - 280 нм)
Ультрафиолетовая недостаточность (синоним световое или солнечное голодание) — это нарушение жизнедеятельности организма человека в результате длительного отсутствия или недостаточного непосредственного действия солнечного света на кожные покровы. При ультрафиолетовой недостаточности снижается сопротивляемость организма к инфекционным заболеваниям, в частности к гриппу; нарушается, а иногда и полностью прекращается процесс образования в коже витамина D из провитамина, входящего в состав секрета сальных желез, вследствие чего нарушается фосфорно-кальциевый обмен, у детей развивается рахит; отмечается предрасположение к кариесу зубов; длительное, отсутствие ультрафиолетовой радиации нарушает защитную функцию кожи, что создает условия для развития пиодермии и дерматитов; появляется повышенная чувствительность к влиянию резких климато-погодных колебаний, значительно снижается работоспособность. Ультрафиолетовая недостаточность наблюдается у шахтеров, среди населения в северных широтах, в больших городах, при длительном пребывании в помещении, так как оконное стекло задерживает ультрафиолетовые лучи.
С учетом оптико-физиологических свойств глаза, а также областей УФ излучений (волновые) установлены: допустимая плотность потока энергии, которой обеспечивают защиту поверхностей кожи и органов зрения.УФ-А не более 10; УФ-В не более 0,005; УФ-С не более 0,001 [Вт/м2]