
- •230100 «Информатика
- •Лекция 1. Основные понятия
- •1.1 Терминология
- •1.2 Стеганография
- •Лекция 2. Докомпьютерные шифры
- •2.1 Подстановочные и перестановочные шифры
- •1.4 Простое xor
- •1.5 Одноразовые блокноты
- •Лекция 3. Криптографические протоколы
- •1 Введение в протоколы
- •2.2 Передача информации с использованием симметричной криптографии
- •2.3 Однонаправленные функции
- •2.4 Однонаправленные хэш-функции
- •2.5 Передача информации с использованием криптографии с открытыми ключами
- •Лекция 4. Цифровые подписи
- •1. Подпись документа с использованием симметричных криптосистем и посредника
- •2.7 Цифровые подписи и шифрование
- •2.8. Генерация случайных и псевдослучайных последовательностей
- •Лекция 5. Основные протоколы
- •1 Обмен ключами
- •Лекция 6. Алгоритмы аутентификации пользователей (Удостоверение подлинности)
- •3.3 Удостоверение подлинности и обмен ключами
- •3.4 Формальный анализ протоколов проверки подлинности и обмена ключами
- •Лекция 7. Цифровые подписи.
- •1. Неотрицаемые цифровые подписи
- •4.4 Подписи уполномоченного свидетеля
- •4.5 Подписи по доверенности
- •4.6 Групповые подписи
- •4.7 Подписи с обнаружением подделки
- •Лекция 8. Длина ключа
- •1 Длина симметричного ключа
- •7.2 Длина открытого ключа
- •7.3 Сравнение длин симметричных и открытых ключей
- •7.4 Вскрытие в день рождения против однонаправленных хэш-функций
- •7.5 Каков должны быть длина ключа?
- •Лекция 9. Управление ключами
- •1 Генерация ключей
- •8.2 Нелинейные пространства ключей
- •8.3 Передача ключей
- •8.4 Проверка ключей
- •8.5 Использование ключей
- •8.6 Обновление ключей
- •8.7 Хранение ключей
- •8.8 Резервные ключи
- •8.9 Скомпрометированные ключи
- •8.10 Время жизни ключей
- •8.11 Разрушение ключей
- •8.12 Управление открытыми ключами
- •Лекция 10. Типы алгоритмов и криптографические режимы
- •9.1 Режим электронной шифровальной книги
- •9.2 Повтор блока
- •9.3 Режим сцепления блоков шифра
- •9.4 Потоковые шифры
- •9.5 Самосинхронизирующиеся потоковые шифры
- •9.6 Режим обратной связи по шифру
- •9.7 Синхронные потоковые шифры
- •9.8 Режим выходной обратной связи
- •9.9 Режим счетчика
- •9.10 Другие режимы блочных шифров
- •Лекции 12. Математические основы
- •11.1 Теория информации
- •Энтропия и неопределенность
- •Норма языка
- •Безопасность криптосистемы
- •Расстояние уникальности
- •Практическое использование теории информации
- •Путаница и диффузия
- •11.2 Теория сложности
- •Сложность алгоритмов
- •Сложность проблем
- •11.3 Теория чисел
- •Арифметика вычетов
- •Простые числа
- •Наибольший общий делитель
- •Обратные значения по модулю
- •Решение для коэффициентов
- •Малая теорема Ферма
- •Функция Эйлера
- •Китайская теорема об остатках
- •Квадратичные вычеты
- •Символ Лежандра
- •Символ Якоби
- •Целые числа Блюма
- •Генераторы
- •Вычисление в поле Галуа
- •11.4 Разложение на множители
- •Квадратные корни по модулю п
- •11.5 Генерация простого числа
- •Практические соображения
- •Сильные простые числа
- •11.6 Дискретные логарифмы в конечном поле
- •Вычисление дискретных логарифмов в конечной группе
- •Лекция 13. Стандарт шифрования данных des (Data Encryption Standard)
- •12.1 Введение
- •Разработка стандарта
- •Принятие стандарта
- •Проверка и сертификация оборудования des
- •12.2 Описание des
- •Начальная перестановка
- •Преобразования ключа
- •Перестановка с расширением
- •Подстановка с помощью s-блоков
- •Перестановка с помощью р-блоков
- •Заключительная перестановка
- •Дешифрирование des
- •Режимы des
- •Аппаратные и программные реализации des
- •15.1 Двойное шифрование
- •15.3 Удвоение длины блока
- •15.4 Другие схемы многократного шифрования
- •15.5 Уменьшение длины ключа в cdmf
- •15.6 Отбеливание
- •15.7 Многократное последовательное использование блочных алгоритмов
- •15.8 Объединение нескольких блочных алгоритмов
- •16.1 Линейные конгруэнтные генераторы
- •Константы для линейных конгруэнтных генераторов
- •16.2 Сдвиговые регистры с линейной обратной связью
- •16.3 Проектирование и анализ потоковых шифров
- •16.4 Потоковые шифры на базе lfsr
- •18.1 Основы
- •18.7 Алгоритм безопасного хэширования (Secure Hash Algorithm, sha)
- •Лекция 17. Алгоритмы с открытыми ключами
- •19.2 Алгоритмы рюкзака
- •Иностранные патенты на алгоритм рюкзака Меркла-Хеллмана
- •Шифрование rsa
- •Скорости rsa для различных длин модулей при 8-битовом открытом ключе (на sparc II)
- •Лекция 19. Безопасность вычислительных сетей Атакуемые сетевые компоненты
- •Уровни сетевых атак согласно модели osi
2.3 Однонаправленные функции
Понятие однонаправленной функции является центральным в криптографии с открытыми ключами. Не являясь протоколами непосредственно однонаправленные функции представляют собой краеугольный камень большинства протоколов, обсуждаемых в этой книге.
Однонаправленные функции относительно легко вычисляются, но инвертируются с большим трудом. То есть, зная х просто рассчитать f(x), но по известному f(x) нелегко вычислить х. Здесь, "нелегко" означает, что для вычисления х по f(x) могут потребоваться миллионы лет, даже если над этой проблемой будут биться все компьютеры мира.
Хорошим примером однонаправленной функции служит разбитая тарелка. Легко разбить тарелку на тысячу крошечных кусочков.. Однако, нелегко снова сложить тарелку из этих кусочков.
Это звучит красиво, но туманно и непонятно. Математически строгого доказательства существования однонаправленных функций нет, нет и реальных свидетельств возможности их построения [230, 530, 600, 661]. Несмотря на это, многие функции выглядят в точности как однонаправленные: мы можем рассчитать их и, до сих пор, не знаем простого способа инвертировать их. Например, в ограниченной окрестности легко вычислить х2, но намного сложнее х1/2. В оставшейся части раздела я собираюсь притвориться, что однонаправленные функции существуют. Мы поговорим об этом в еще разделе 11.2.
Итак, что же хорошего в однонаправленных функциях? Непосредственно их нельзя использовать для шифрования. Сообщение, зашифрованное однонаправленной функцией бесполезно - его невозможно дешифровать. (Упражнение: напишите на тарелке что-нибудь, разбейте тарелку на крошечные осколки и затем отдайте их приятелю. Попросите его прочитать сообщение. Посмотрите, как он будет озадачен однонаправленной функцией.) Для криптографии с открытыми ключами нам нужно что-то другое (хотя существуют и непосредственные криптографические применения однонаправленных функций - см. раздел 3.2).
Однонаправленная функция с люком - это особый тип однонаправленной функции, с секретной лазейкой. Ее легко вычислить в одном направлении и трудно - в обратном. Но если вам известен секрет, вы можете легко рассчитать и обратную функцию. То есть, легко вычислить f(x) по заданному х, но трудно по известному f(x) вычислить х. Однако, существует небольшая секретная информация, у, позволяющая, при знании f(x) и у, легко вычислить х.
В качестве хорошего примера однонаправленной функции с люком рассмотрим часы. Легко разобрать часы на сотни малюсеньких кусочков и трудно снова собрать из этих деталей работающие часы. Но, с секретной информацией - инструкцией по сборке - намного легче решить эту задачу.
2.4 Однонаправленные хэш-функции
У однонаправленной хэш-функции может быть множество имен: функция сжатия, функция сокращения contraction function, краткое изложение, характерный признак, криптографическая контрольная сумма, код целостности сообщения (message integrity check, MIC) и код обнаружения манипуляции (manipulation detection code, MDC). Как бы она не называлась эта функция является центральной в современной криптографии. Однонаправленные хэш-функции - это другая часть фундамента многих протоколов.
Хэш-функции, долгое время использующиеся в компьютерных науках, представляют собой функции, математические или иные, которые получают на вход строку переменной длины (называемую прообразом) и преобразуют ее в строку фиксированной, обычно меньшей, длины (называемую значением хэш-функции). В качестве простой хэш-функции можно рассматривать функцию, которая получает прообраз и возвращает байт, представляющий собой XOR всех входных байтов.
Смысл хэш-функции состоит в получении характерного признака прообраза - значения, по которому анализируются различные прообразы при решении обратной задачи. Так как обычно хэш-функция представляет собой соотношение "многие к одному", невозможно со всей определенностью сказать, что две строки совпадают, но их можно использовать, получая приемлемую оценку точности.
Однонаправленная хэш-функция - это хэш-функция, которая работает только в одном направлении: легко вычислить значение хэш-функции по прообразу, но трудно создать прообраз, значение хэш-функции которого равно заданной величине. Упоминавшиеся ранее хэш-функции, вообще говоря, не являются однонаправленными: задав конкретный байт, не представляет труда создать строку байтов, XOR которых дает заданное значение. С однонаправленной хэш-функцией такого не выйдет. Хорошей однонаправленной хэш-функцией является хэш-функция без столкновений - трудно создать два прообраза с одинаковым значением хэш-функции.
Хэш-функция является открытой, тайны ее расчета не существует. Безопасность однонаправленной хэш-функцией заключается именно в ее однонаправленности. У выхода нет видимой зависимости от входа. Изменение одного бита прообраза приводи к изменению, в среднем, половины битов значения хэш-функции. Вычислительно невозможно найти прообраз, соответствующий заданному значению хэш-функции.
Посмотрите на это как на способ получить характерные признаки файлов. Если вы хотите проверить, что у кого-то есть тот же файл, что и у вас, но вы не хотите, чтобы этот файл был передан вам, попросите послать вам значение хэш-функции. Если присланное значение хэш-функции совпадет с рассчитанным вами, то почти наверняка чужой файл совпадает с вашим. Это особенно полезно при финансовых транзакциях, когда вы не хотите где-то в сети превратить снятие со счета $100 в снятие $1000. В обычных условиях вы можете использовать однонаправленную хэш-функцию без ключа, так что кто угодно может проверить значение хэш-функции. Если нужно, чтобы проверить значение хэш-функции мог только один получатель, прочтите следующий раздел.
Коды проверки подлинности сообщения
Код проверки подлинности сообщения (message authentication code, MAC), известный также как код проверки подлинности данных (data authentication code, DAG), представляет собой однонаправленную хэш-функцию с добавлением секретного ключа (см. раздел 18.14). Значение хэш-функции является функцией и прообраза, и ключа. Теория остается той же, что и для хэш-функций, но только тот, кто знает ключ, может проверить значение хэш-функции. MAC можно создать с помощью хэш-функции или блочного алгоритма шифрования, существуют также и специализированные MAC.