
- •Раздел 1.
- •Характеристика видов бизнеса.
- •2. Экономическое управление предприятием
- •Характеристика налоговой системы рф. Налог на добавленную стоимость.
- •Издержки. Классификация, виды и их особенности.
- •Прибыль. Сущность, виды и способы формирования и распределения
- •Рентабельность. Сущность, виды и способы расчета.
- •Понятие бизнес-плана предприятия и его основные разделы.
- •Эффективность предприятия в рыночной экономике.
- •Виртуальные предприятия. Их функционирование.
- •Общая характеристика процесса проектирования информационной системы.
- •Разработка пользовательского интерфейса.
- •Инструментальные средства проектирования информационных систем: классификация и примеры.
- •Типизация проектных решений.
- •Управление проектом информационной системы.
- •Основы функционирования важнейших видов информационного бизнеса
- •Индустрия информации, ее структура, продукция и место в экономике страны. Основные особенности продукции индустрии информации.
- •18. Основные и оборотные средства предприятий индустрии информации.
- •Информационный маркетинг как процесс коммуникации.
- •20. Правовая охрана интеллектуальной и промышленной собственности в информационной сфере.
- •Раздел VII. Права на результаты интеллектуальной деятельности и средства индивидуализации
- •Корпоративные информационные системы. Определение, структура, функции.
- •Корпоративные информационные системы. Классификация. Характеристики. Примеры.
- •Инфраструктура корпоративных информационных систем. Состав, краткая характеристика компонентов.
- •Преимущества и недостатки централизованной и распределенной модели управления данными.
- •27. Клиент-серверная и с сервисно - ориентированная информационные системы: свойства, отличительные особенности, архитектура.
- •28. Особенности проектирования и разработки oltp и olap приложений.
- •29. Особенности построения систем поддержки принятия управленческих решений (dss).
- •31. Разработка бизнес - логики на уровне сервера баз данных (хранимые процедуры, пользовательские функции, триггеры, механизмы поддержки целостности данных).
- •32. Классификация операционных систем. Управление задачами. Управление процессами и потоками в операционной системе.
- •33. Управление основной памятью. Виртуальная память и виртуальное адресное пространство приложения.
- •35. Назначение разделов основного диска. Типы и назначение динамических томов. Обеспечение отказоустойчивости динамических томов.
- •36. Протоколы локальных и глобальных сетей. Уровни сетевой архитектуры модели osi.
- •38. Понятие it-сервиса: основные требования по формированию, itil-библиотека.
- •41.Протокол sмтр. Сеанс и команды sмтр. Спецификация мiме. Кодирование в base64.
- •42. Мониторинг характеристик операционной системы.
- •Мониторинг и анализ локальных сетей.
- •44. Функциональные группы задач управления корпоративными сетями.
- •45. Формальные грамматики и языки. Синтаксические деревья. Задачи разбора и вывода.
- •46. Определение и процесс функционирования автомата с магазинной памятью.
- •47. Понятие автоматной грамматики. Построение и формальное описание конечного автомата.
- •48. Разбор с возвратами. Построение и формальное описание автомата с двумя магазинами.
- •49. Генерация объектного кода. Построение синтаксического дерева. Генерация объектного кода для линейных участков программ.
- •Виды резервирования надежности.
- •Перспективы развития информационных технологий.
- •Определение понятия информации.
- •60. Основные понятия оптимизационной экономико-математической модели
- •61. Переменные и ограничения оптимизационной экономико-математической модели(см.60)
- •Основные этапы решения оптимизационной задачи
- •67. Основные модели нейронов, применение нейронных сетей для задач распознавания образов.
- •1. Многослойные нейронные сети
- •2. Нейронные сети высокого порядка
- •3. Нейронные сети Хопфилда
- •4. Самоорганизующиеся нейронные сети Кохонена
- •5. Когнитрон
- •6. Достоинства и недостатки
- •68. Назначение врм-модуля для принятия управленческих решений. Инструментальные средства управления корпоративными знаниями.
- •Три составные части bpm
- •69.Классификация, основные свойства вi и км компонентов кис.
- •Характеристика и содержание основных этапов маркетинговых исследований. Основные методы проведения маркетинговых исследований.
- •Виды проектов маркетинговых исследований, их основные характеристики и взаимосвязь между ними.
- •Методы сбора данных. Вторичные и первичные данные, их преимущества и недостатки.
- •Виды измерительных шкал и их основные характеристики.
- •Методы выборочных исследований. Виды вероятностных и детерминированных выборок. Источники ошибок выборочных исследований.
- •Ошибки выборки
- •Ошибки наблюдений (измерений)
- •Ошибки отсутствия наблюдений
- •Анализ данных. Состав работ на этапе анализа данных. Кодирование открытых и закрытых вопросов.
- •Источники возникновения и цели реинжиниринга бизнес-процессов.
- •Оценка эффективности реинжиниринга бизнес-процессов.
- •Основные функции и свойства реинжиниринга бизнес-процессов.
- •Участники реинжиниринговой деятельности и их функции.
- •Определение понятия «бизнес - процесс».
- •82. Ресурсный подход к деятельности фирмы.
- •83.Корпоративная архитектура и ее составляющие.
- •84. Цели процессного подхода. Система терминов процессного подхода.
- •85. Применение правил выделения процессов. Пошаговое выделение процессов организации.
- •Раздел 6 «Управление ресурсами» — ресурсам процесса;
- •Раздел 7 «Выпуск продукции» — технологии процесса (учет требований потребителя, проектирование, закупки, выпуск продукции и т.Д.);
- •Раздел 8 «Измерения, анализ и улучшения» — организация мониторинга и улучшений процесса.
- •87.Управление данными
- •Управление данными: цели, задачи и основные направления
- •Иерархическая модель данных: типы структур, основные операции и ограничения
- •Сетевая модель данных: типы структур, основные операции и ограничения
- •Реляционная модель данных: типы структур, основные операции и ограничения
- •Инфологическая модель предметной области
- •4.1 Установка субд
- •4.2 Физическая организация базы данных. Файлы и файловые группы
- •4.3 Объекты базы данных
- •4.4 Модель безопасности
- •Резервное копирование и восстановление после сбоев
- •Высокая доступность данных
- •4.7 Репликация данных
- •4.8 Автоматизация административных задач
- •4.9 Мультисерверная среда
- •Разработка бизнес - логики базы данных. Хранимые процедуры и триггера
- •Целостность базы данных
- •Вопрос № 92
- •Толстый клиент
- •Тонкий клиент
- •Тонкие клиенты, работающие в терминальном режиме
- •Протоколы, используемые тонкими клиентами
- •Примеры тонких клиентов
- •Вопрос № 93
- •Вопрос № 94
- •Вопрос № 95
- •Вопрос № 96
- •97:Аутсорсинг. Классификация и модели
- •98. Промышленные сети. Требования, предъявляемые к ним.
- •99. Характеристика промышленной сети Profibus-dp
- •100. Характеристика промышленной сети Profibus-pa
- •101. Характеристика промышленной сети Profibus-fms
- •Формат кадра Базовый формат кадра данных
- •Расширенный формат кадра данных
- •107. Программируемый логический контроллер. Принцип работы. Eeprom
- •Программируемый логический контроллер. Основные характеристики. Eprom.
- •Характеристики
- •109. Составные модули пакета ArcInfo.
- •110.Геоинформационные системы Geograph
- •Расчет абсолютной эффективности
- •Учет фактора времени
- •Учет фактора неопределенности
- •Сравнение вариантов автоматизации
- •115. Система моделирования aris. Состав, возможности.
- •117. Языки bpel, uml. Возможности, сферы применения.
- •Диаграмма классов
- •Диаграмма компонентов
- •Диаграмма композитной/составной структуры
- •Диаграмма развёртывания
- •Диаграмма объектов
- •Диаграмма пакетов
- •Диаграмма деятельности
- •Диаграмма автомата
- •Диаграмма вариантов использования
- •Диаграммы коммуникации и последовательности
- •Диаграмма обзора взаимодействия
- •Диаграмма синхронизации
Ошибки выборки
А) Статистическая погрешность - колебания выборочных оценок, вызванные обследованием не всей совокупности, а ее части. Уменьшается с увеличением размера выборки.
Б) Смещения, вызванные неправильным применением выборочной техники: игнорированием неравной вероятности отбора респондентов, использованием приближенных или смещенных оценок.
Ошибки наблюдений (измерений)
Смещения, вызванные некорректным инструментарием (вопросник, инструкции интервьюеру и т.п.), ошибками интервьюеров, ошибками при вводе и обработке данных.
Ошибки отсутствия наблюдений
А) Невключение в совокупность
Отдельные домохозяйства или группы домохозяйств, а иногда и целые территории, не попадают в выборочный фрейм.
Б) Отсутствие ответов
Отсутствие ответов из-за недостижимости респондентов или их отказов от участия в исследовании. Отсутствие ответов на отдельные вопросы (пропущенные данные).
Способы уменьшения ошибок:
повышение уровня достижимости (выбор времени проведения интервью, повторные посещения, предварительная договоренность об интервью, мотивация респондентов для участия в исследовании, исключение сложных и нежелательных вопросов);
специальные исследования недостижимых респондентов для внесения поправок в выборочные оценки;
взвешивание, приписывание ответов.
Анализ данных. Состав работ на этапе анализа данных. Кодирование открытых и закрытых вопросов.
Анализ данных начинается с перевода «сырых» данных в осмысленную информацию и включает их введение в компьютер, проверку на предмет ошибок, кодирование, представление в матричной форме (табулирование). Все это называется преобразованием исходных данных.
Далее проводится статистический анализ. Выделяют пять основных видов статистического анализа, используемых при проведении маркетинговых исследований: 1. Дескриптивный анализ, в основе которого лежит использование таких статистических мер, как средняя величина, мода, среднее квадратическое отклонение, размах или амплитуда вариации. 2. Выводной анализ, заключающийся в использовании статистических процедур (например, проверка гипотез) с целью обобщения полученных результатов на всю исследуемую совокупность. 3. Анализ различий, используемый для сравнения результатов исследования нескольких групп (объектов) для определения степени реального отличия в их поведении, реакции на одни и те же воздействия и т.п. 4. Анализ связей, направленный на определение систематических связей переменных, их направленности, силы и т.п. 5. Предсказательный анализ, используемый в целях прогнозирования развития событий в будущем, например путем анализа временных рядов.
Кодирование — это «технический прием, с помощью которого данные распределяются по категориям. Посредством кодирования сырые данные превращаются в символы — обычно цифровые, которые можно табулировать и подсчитывать. Однако это преобразование не должно осуществляться автоматически; оно требует здравого суждения кодировщика». Первый этап кодирования заключается в специфицировании категорий или классов, к которым будут относиться ответы. Кодирование закрытых вопросов и большинства средств балльной оценки не представляет трудностей, потому что оно устанавливается при конструировании носителя собираемых данных. Кодирование открытых вопросов может оказаться весьма затруднительным и зачастую много более дорогим, чем кодирование закрытых вопросов. Кодировщику приходится определять подходящие категории на базе ответов, которые не всегда предсказуемы. Если анкет так много, что необходимо использовать нескольких кодировщиков, дополнительной проблемой может стать возникновение несоответствия в самом кодировании. Чтобы удостовериться в логической последовательности обработки данных, эту работу необходимо разделять по задачам, а не в равных долях делить анкеты между кодировщиками. Второй этап кодирования касается назначения кодовых номеров классов. Например, мужской пол может обозначаться буквой М, а женский — буквой F. Как альтернативный вариант, эти классы могут обозначаться 1 — мужчина и 2 — женщина. Вообще говоря, для обозначения классов лучше использовать цифры, а не буквы. На этой стадии также лучше использовать цифры в том виде, как они зафиксировались в форме сбора данных, а не раскладывать их на более мелкие категории. Когда для анализа данных предполагается использовать компьютер, кодирование необходимо выполнять таким образом, чтобы данные оказывались готовыми для ввода в машину. Кроме того, рекомендуется следовать установившимся традициям кодирования данных: 1. Располагать только один символ в каждой колонке. 2. Использовать только числовые коды, а не буквы алфавита или специальные символы вроде @ или пробел, 3. Использовать ровно столько колонок поля, назначаемого для переменной, сколько необходимо для полного охвата всех ее возможных значений. 4. Использовать стандартные коды для «отсутствия информации». Так, все ответы «не знаю» должны кодироваться цифрой 8, «нет ответов» — цифрой 9, а «не применялось» обозначаться как 0. 5. Кодировать в каждой записи идентификационный номер респондента. Как правило, нет и не будет необходимости идентифицировать в этом номере имя респондента. Этот код просто связывает анкету с кодируемыми данными. Завершающий этап процесса кодирования состоит в подготовке книги кодов, которая содержит общие инструкции, указывающие, каким образом была закодирована каждая позиция данных. В ней перечисляются коды каждой переменной и категории, включенные в каждый код. Далее в ней указывается, где в компьютерной записи располагается переменная и каким образом эта переменная читается — например, с десятичной точкой или как целое число.